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Abstract.  In the present article, evolution of microstructure during solidi- 
fication, as a function of various parameters, is discussed. Macrosegregation is 
described as being due to insufficient diffusivity of solute in the solid. Pattern 
formation is discussed in the light of instabilities at the solidification growth 
front. An overview of the scaling relations for various microstructures is given. 
Metastable extensions to equilibrium phase diagrams and corrections to 
equilibrium quantities are described. 
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1. Introduction 

A majority of manufacturing processes involve melting and solidification of metals and 
alloys during fabrication of various components. Primary manufacturing processes such as 
ingot casting, continuous casting, squeeze casting, pressure casting and atomization, and 
secondary manufacturing processes such as welding, soldering, brazing, cladding and 
sintering, involve solidification as an important stage of the process. Thermal and solutal 
conditions that prevail during the process and thermodynamic and kinetic constraints of 
the material determine the final microstructure. The mechanical or functional properties 
and the microstructure of the various phases in turn dictate the performance of the final 
product.  
 Solidification involves the extraction of heat from the liquid and the motion of the 
solid–liquid interface. The rate of solidification is determined mainly by heat extraction 
through thermal diffusion and convection. However, solidification microstructure is a 
complex function of the rate of solidification (v), temperature gradients (G), composition 
(C) and several material characteristics such as phase equilibrium reactions, nucleation and 
growth kinetics of the phases and crystallographic constraints. A perspective of evolution 
of microstructure during solidification is presented in the light of our current 
understanding of solidification processing. Particular attention is paid to the effect of 
system size and resultant scale dependence of the microstructure and segregation profile. 
We emphasize the fact that our current knowledge allows us to have quantitative 
understanding. 
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2. System scale 

Consider a directional solidification setup as shown in figure 1. Thermal flux balance at 
the solidification interface leads to the relation: 

LvGKGK LLSS ρ=− . (1) 

Here, KS and KL are thermal conductivities and GS and GL, thermal gradients in solid and 
liquid, and ρ, L and v are density, latent heat and solidification rate respectively. 
Neglecting the situation of a highly undercooled melt, when the temperature gradient in 
the liquid is negative, the highest directional solidification rate achievable for a given 
system size is limited by the conduction mode heat removal by the solidified metal alone 
and is given by, 

νMAX = KSGS/ρL. (2) 

Equation (2) assumes no resistance to heat transfer. For a casting process, heat transfer 
through the surrounding mould is a limiting factor. In this case, (2) needs to be modified 
by incorporating resistance to heat transfer by the mould. In this case, solidified thickness 
or the modulus of solidification (V/A) is related to the solidification time by, 
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Here the subscript M represents mould, V and A represent volume and area of the mould, r 
the radius of curvature of the mould, and n is a geometric constant. The time for 
completion of solidification is tf and T0 is the initial liquid temperature. As one can see, the 
equation consists of terms outside the bracket that are controlled essentially by the 
material properties. The first term in the bracket reflects the properties of the mould while 
the second term reflects the geometry. The term n takes different values depending on the 
geometry of the casting, and thus influences the solidification process. For example, a 
spherical mould (n = 2) solidifies faster than a cylindrical mould (n = 1). 
 For a conducting mould, the main resistance to heat transfer occurs at the mould–metal 
interface. In such a case (for example, chill casting), the solidification thickness (S) is 
 
 

 
Figure 1. Schematic of directional solidi-
fication. 
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limited by the heat transfer coefficient h across the metal–mould interface. A simple heat 
transfer analysis allows us to obtain the following governing equation for this case, 

S = tf
 h(TM – T0)/ρSL. (4) 

Thus the rate of solidification becomes a function of the thermal parameters of the process 
and the materials properties. However, it should be noted that in processes such as the 
Bridgeman technique, growth rate and temperature gradient can be controlled 
independently. This enables study of these two important parameters on solidification 
microstructure and properties (Flemings 1974). 

3. Segregation 

Equilibrium solidification assumes that the solid-liquid interface moves at an 
infinitesimally slow pace such that the thermal and the solutal fields redistribute to adjust 
to the temperature and the composition values given by the equilibrium phase diagram. 
However, as can be gathered from the previous section, the solidification speed (v) is 
finite. The scale of the system for this to happen is given by, 

Ds » LXν. (5) 

Here, LX is the system length scale in one dimension and DS is the solute diffusivity in 
solid. Thermal and solutal diffusivities are finite and usually very small. This imposes a 
limit on the system scale to qualify for equilibrium solidification. Substituting typical 
diffusivities (thermal: 10–4 cm2/s, solutal: 10–6cm2/s), for a system size of 1 cm, the 
solidification rate should be below 10–6cm/s, a very small value. Most of the solidification 
processes in reality are at rates of about three orders of magnitude larger. As a result, the 
solutal field equilibration is not achieved and microsegregation patterns will result. 
 The composition of the liquid CL left over after a fraction fL has solidified from a liquid 
of initial composition C0 is now no longer be given by the equilibrium lever rule. This 
problem has been resolved by Scheil (1942). The formulation assumes no solid diffusivity 
and infinite liquid diffusivity. The concentration of the liquid in this case is given by, 

)1(
0

−= k
LL fCC  (6) 

Here, k is the solute partition coefficient (CS/CL) which depends on the nature of the phase 
diagram. This is popularly known as Scheil’s equation or non-equilibrium lever rule. A 
modification of this equation to incorporate finite diffusivities of solid as well as liquid 
gives the following expression which is valid for large systems (Bower et al 1966), 
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where, 

a = – DLG/(mLνC0) and mL is the slope of the liquidus. 

 For large system scales, the solute field in the liquid itself might not be uniform due to 
convection and the solute content of the solid formed at various locations in the system 
might be non-uniform, resulting in macrosegregation (Flemings 1974). 
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4. Microstructure evolution 

In the previous sections we have discussed about the rate of solidification and composition 
profiles that come about at the system scale. However, as the solidification proceeds, the 
solid–liquid interface could undergo perturbations and develop instabilities that lead to the 
final microstructure of the solid. 

4.1 Cellular pattern 

For a pure metal, a positive thermal gradient in the liquid leads to a stable plane front 
solidification and a negative thermal gradient in the liquid leads to instability of plane 
front giving rise to ‘thermal dendrites’ that are not distinguishable by microstructural 
analysis. 
 Consider a thermal gradient situation, as in figure 2, for an alloy. A small perturbation 
on the interface for the stable interface (figure 2c) will ‘see’ temperature higher than the 
liquidus temperature and hence will melt back. Thus the stability of the flat interface will 
be maintained. But for the unstable interface (figure 2d), interface across a small 
perturbation ‘sees’ more undercooling at its location and grows further, leading to a 
 

 

   
 

   
 
Figure 2. Schematic to indicate constitutional supercooling. (a) Phase diagram. (b) Solute-
enriched layer in front of solid–liquid interface. (c) Stable interface. (d) Unstable interface. 
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breakdown of the planar front. The critical thermal gradient in the liquid at which such 
breakdown can take place is given by, 

GL/ν ≥ MLC0(1 – k)/kDL. (8) 

The microstructural patterns that form in this manner are termed ‘cellular’. Hunt (1977) 
analysed the scale of these patterns (λ) as a function of the thermal gradient G, and 
solidification speed v. This is given by, 

νG2λ4 = 64θD[m(1 – k)C∞ + KGDν–1]. (9) 

Here θ is the curvature undercooling constant. At the critical condition for constitutional 
undercooling, the RHS of (9) tends to zero. Cellular pattern results if the system is away 
from the critical condition by an increase in v or C or by a decrease in G. The scaling 
relation given by (Hunt 1977). 

νG2λ4 = –64θDm(1 – k), (10) 

or in other words, λ ∝ G–1/2 or λ ∝ ν–1/4. 
 In the foregoing discussion, we have assumed isotropy, i.e. that there is no preferred 
crystallographic orientation of easy growth and that shape of the interface is determined by 
the growth parameters. However, in several systems such as silicon, attachment kinetics 
are different along different planes leading to faceting of the growing front. Faceting 
behaviour is observed when the parameter α, popularly known as Jackson roughness 
parameter, given in the equation below, is above 2 (Jackson & Hunt 1965), 

α = L0n*/(kBTMN). (11) 

Here, L0
 is the latent heat per atom, n* is the number of neighbors in the plane growing, kB 

is the Boltzmann constant and N is the co-ordination number. Thus the faceting tendency 
depends upon both material parameters like latent heat and geometrical parameter of the 
growing plane and the crystal. 

4.2 Effect of surface tension on plane front solidification 

Although (8) is highly successful in predicting the onset of the interface breakdown during 
growth, this is not valid at high growth. At high growth velocity, the perturbation 
wavelengths become smaller. When the perturbations are small, surface tension plays an 
important role, comparable in magnitude to that of the solute field and can stabilize the 
plane front. Mullins & Sekerka (1963) assumed interface equilibrium, isotropic surface 
energy and no convection to obtain a thermal condition at which the plane front is 
stabilized by the surface tension. A simple form of the conditions for the interface stability 
can be written as, 
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where ψ is a dimensionless stability function = f(A), 

A = – k2γνTM/[(1 – k)ρLDLmLC0]. 
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The value of ψ can be obtained from the table given by the authors and provides a simple 
way to test the stability of the interface at high solidification rates. There now exists a rich 
collection of experimental findings which points to the correctness of this approach. 

4.3 Dendritic pattern 

Anisotropy of surface tension and instabilities at the growing tip of the cell can lead to side 
branching. A cell with side branches resembles a tree and so is termed ‘dendrite’. While 
the growth direction of cells is determined by the maximum thermal gradient, the growth 
direction of dendrites deviates from it. It is a compromise between the direction of 
maximum thermal gradient and of the crystallographic easy growth, which is 〈100〉 for 
FCC and BCC and 〉〈 0110  for HCP (Billia & Trivedi 1993). 
 Dendrite tip temperature (TD), modified by the presence of nonequilibrium compositions 
at the interface and the curvature, is given as 

TD = TM + mVCL – ∆TC. (13) 

Here, mV is the liquidus slope modified for the solidification velocity v, CL is the liquid 
composition and ∆TC is the curvature undercooling. 
 The curvature at the tip of a dendrite can be seen as due to a pressure field and the 
resultant decrease in the freezing temperature is given by the Gibbs–Thomson relation. 

∆TC = γκ/∆S. (14) 

Here, γ  is surface tension, κ is curvature of interface and ∆S is entropy of fusion per unit 
volume. 
 Kurz & Fisher (1981) have modelled the dendritic growth assuming that the dendrite tip 
is a hemisphere with radius equal to the wavelength of the critical instability of the solid–
liquid interface. By minimizing the undercooling with respect to the radius of curvature of 
the tip, they have obtained steady-state growth velocity as given by,  
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Here, R is the radius of the dendrite tip, and Γ is the surface tension. In the limiting cases, 
we observe the following behaviour. 
 

At small v: 

mCkGkR

DG
v

0)1(2)1(

2

−−−
= , (15a) 

G

mC

kv

D
R 02

)1(

2
+

−
= . (15b) 

At large v: 

mCkR

D
v

0
2

2

)1(

4

−
Γ

=
π

, (15c) 



Solidification microstructure development 31

R = 2π[(DΓ/νk∆T0)]
1/2 (15d) 

∆T0 = –mC0(1 – k)/k, (15e) 

i.e., at small growth rates, the radius declines rapidly with increasing growth rate and at 
large growth rates, the radius falls parabolically with increasing growth rates. 
 Assuming the overall morphology of the dendrite to be ellipsoidal, the primary dendrite 
spacing d is obtained as, 
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For large v: 

d = 4⋅3∆T′1/4(DΓ/∆T0k)1/4ν–1/4G–1/2, (16b) 
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The secondary arm spacing λ2 is one of the most important length scales of dendritic 
microstructure since it determines the periodicity of solute segregation profile in the 
solidified material and thus influences its properties. The side branches become stable 
when the solute diffusional effects for instability are balanced by the stabilizing effect of 
the surface tension. It turns out that the secondary arm spacing is a geometric mean of the 
length scales of the thermal, solutal and capillarity fields (Trivedi & Kurz 1994). 

λ2 = (lDlCd0)
1/3. (17) 

Here, lD is the thermal diffusion length, lC is the solute diffusion length and d0 is the 
capillarity length. 

4.4 Eutectic growth 

In the discussion above, we have considered one solid phase growing in to liquid under 
various thermal conditions. However, in eutectic alloy systems two solid phases grow in to 
a liquid simultaneously. The microstructure exhibited by the eutectic solids is also varied. 
They can be classified as regular eutectic with lamellar or rod morphology and irregular 
eutectic showing no regularity of distribution of the two phases. Regular eutectic growth is 
modelled by Jackson & Hunt (1966) who solved the solute diffusion equation for a steady 
state growth at minimum undercooling. The resultant equation gives a relation between the 
undercooling, growth rate and eutectic spacing (Jackson & Hunt 1966), 

∆T/m = νλQ + (A/λ), (18a) 

Q = P(1 + ς)2C0/ςD, (18b) 
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),//()/)(1(2 ββαα αας mmA LL+=  (18c) 

ς = Sα/Sβ (18d) 

where, m is the harmonic mean of the liquidus slopes for α and β phases, P is a function of 
the volume fraction, Sα and Sβ are the half-spacings of the lamellae/rods and Laα and Laβ , 
the Gibbs–Thompson coefficients of α and β phases respectively. 
 Assuming that the solid grows at the maximum growth rate for a given undercooling, 
the eutectic spacing, velocity and undercooling are related as: 

λ2ν = A/Q, (19a) 

∆T2/ν = 4m2AQ, (19b) 

∆Tλ = 2mA. (19c) 

The above analysis is successful in predicting the lamellar or rod spacings under different 
growth conditions as well as the shape of the solid–liquid interface. This also explains the 
transformation of the lamellar eutectic to rod eutectic at low volume fraction. The analysis 
of the other eutectic morphologies is more complex. Although progress has been made in 
these directions, we shall not discuss them in the present article. 

5. Non-equilibrium effects 

5.1 Effect of convection 

Although most of the models in the solidification literature have been developed under the 
assumption that the liquid is static, in real systems convection cannot be ignored. 
Convection enhances transport of heat and species, thereby introducing a correction to 
thermal and solutal diffusivity. Enhanced diffusion helps in the coarsening of 
microstructures and the final pattern spacing falls into a band of values rather than a single 
selected value. Convection also influences morphological instability and interface 
structure. There have been observations on massive transparent specimens revealing that 
convection results in a gradient of microstructure along the interface from smooth 
interface to dendrites (Boettinger et al. 2000). 

5.2 Correction to partition coefficient 

Finite diffusivity of species does not ensure partitioning of species across the solid–liquid 
interface at high growth rates. The effective partition coefficient has to be corrected by the 
velocity of the interface. Aziz (1982) derived an expression for this corrected partition 
coefficient as in (18). This expression has important consequences such as extended solid 
solution formation at high growth rates. In the limit of velocity taking a high value in 
comparison with the diffusion limited velocity, the partition coefficient tends to unity, 
resulting in complete solute trapping, 

k* = (k + νi/νD)/(1 + νi/νD), (20) 

where vi is the interface velocity, vD is the interface characteristic diffusion velocity, k* is 
the corrected partition coefficient. 
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5.3 Metastable phase diagram 

At high growth rates, if nucleation of equilibrium phases gets suppressed due to 
insufficient time, metastable phase formation is possible. Modifications to the phase fields 
in the equilibrium phase diagram are required. As an illustration, we can consider the case 
of TiNi alloy with about 0.3 wt% silicon. Silicon is known to promote icosahedral co-
ordination in undercooled Ti–Ni melts and thus increases the nucleation of the Ti2Ni 
phase. Ti2Ni has a crystal structure that can be described as a packing of eight distorted 
icosahedra. A rapid solidification route such as melt spinning leads to large undercooling 
(∆T/TM ~ 0⋅4) that suppresses nucleation of equilibrium phases. Thus, nano dispersions of 
Ti2Ni phase are observed to form during melt spinning of Ti–Ni alloy though the 
equilibrium phase diagram shows no formation of this phase from equiatomic melts. A 
calculated phase diagram of TiNi to incorporate metastable extension to the Ti2Ni phase 
field is shown in figure 3 (dashed line) (Nagarajan & Chattopadhyay 1994). 
 In the limit of rapid solidification, nucleation of a crystalline phase formation itself 
could be suppressed and the liquid could freeze as a glass. These amorphous alloys exhibit 
fascinating properties such as high elastic modulus, high corrosion resistance and high 
strength and toughness. Production of such metallic glasses in a bulk form is presently one 
of the active areas of research in materials science. 
 As we can gather from our discussion, the kind of phases that grow into the liquid, and 
their morphology, is a strong function of processing parameters such as growth rate, 
thermal gradient and composition. It is possible that one could develop a solidification 
map with processing parameters along the axes and phases and their morphologies marked 
in various domains. Gill & Kurz (1995) have demonstrated this by developing an Al–Cu 
solidification microstructure map (Gill & Kurz 1995). 
 

 
Figure 3. Phase diagram of the Ti–Ni system with the metastable extension of Ti2Ni phase field. 



G Phanikumar and K Chattopadhyay 34

6. Conclusions 

From the above discussions, it is clear that most of the solidification processes can now be 
understood at basic level. Quantitative relations are now available which can predict the 
development of the microstructure under different solidification conditions. In fact, several 
commercial softwares are now available that predict the microstructure of the processed 
samples and are extensively used in the design of castings. In recent times, emergence of 
the phase field technique and fast computers raises the hope of computationally studying 
the evolution of microstructure during solidification with very few assumptions. Thus, it 
appears that the field of solidification processing has reached maturity and is now only a 
matter of incorporating the available knowledge in process control. This line of argument, 
widely circulated in the international research arena by some leading experts in the field, is 
however fraught with great danger. Although the progress is impressive, it is prudent to 
remember that our ability to model nucleation is still not satisfactory. Almost all the 
growth models also ignore the issues of convection and complex fluid flow that affect the 
evolution of the microstructure. Admittedly, a great deal of understanding has been 
achieved for pattern formation and microstructure development. However, beautiful 
patterns in complex alloys which surprise a solidification researcher and raise hope of new 
properties still emerge unexpectedly. Thus, the field is expected to remain vibrant for 
researchers and engineers in the near future. 
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