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Abstract

Essential progress of modeling of free dendrite growth in undercooled melts was achieved by
the ”classic” work of Wilfried Kurz et al. In the present paper, recent developments in ex-
perimental methods are described to measure the dendrite growth dynamics in undercooled
metallic melts, which are containerlessly processed by electromagnetic levitation technique.
Results of essentially improved accuracy in measuring the dendrite growth velocity as a func-
tion of undercooling are presented for “nominally” pure nickel. In parallel, the sharp interface
dendrite growth theory is extended to include effects both of melt convection and electromag-
netically induced stirring of the levitation processed liquid. The analysis of the results indicate
that fluid flow causes an enhancement of the dendrite velocity in the small undercooling
range. Also, small amounts of impurities in nickel can lead to an increase of the growth ve-
locity but with a temperature characteristics being different from that of the effect by fluid
flow. This allows to discriminate between both contributions as it is shown by experimental
investigations and modeling within the extended sharp interface model and phase field mod-
eling as well.

Introduction

The mode of dendritic growth is of essential interest in manifold dynamic processes in inor-
ganic as well as in organic materials. In particular, it is of great practical importance in solidi-
fication processes of metallic materials as casting, welding, surface re-solidification, melt
spinning and others. The formation of dendrites in melts is an example of self-organized for-
mation of structures. Worldwide 1013 dendrites per second are formed during casting of met-
als. Since the dendritic morphology controls the microstructure evolution of a material it is of
great importance in designing metallic materials with respect to their physical and chemical
properties and quality for users. Concerning solidification one distinguishes between near-
equilibrium and non-equilibrium conditions. In the former case as present in directional so-
lidification cooperative dendritic growth occurs due to constitutional undercooling effects
while in the latter case one deals with equiaxed free growth of dendrites in undercooled melts.
Here, the undercooled melt acts as a heat sink for the released heat of crystallization of a
growing solid dendrite.

The efforts to date are directed towards a quantitative description of dendrite growth dynam-
ics in metallic melts in order to develop a predictive capability for the design of materials
from the liquid state. Such quantitative modeling requires both reliable physical models for
dendrite growth dynamics and accurate experimental investigations of the growth dynamics as
well. Concerning the theoretical description of equiaxed dendrite growth also under the con-



ditions far away from equilibrium, the pioneering work of Wilfried Kurz et al. gave access to
analytical treatment of dendritic growth in undercooled melts [1]. The sharp interface model
describes dendritic growth in terms of thermal and chemical Peclét numbers, Pt and Pc, re-
spectively. This means, the product of dendrite growth velocity V and dendrite tip radius R is
correlated to the undercooling ∆T. In order to achieve a unique relation of all three variables
the result of the marginal stability analysis was utilized for a long time, which delivers an in-
dependent equation for the tip radius R [2]. Originally, the dendrite growth theory was devel-
oped for conditions of local equilibrium at the solid-liquid interface. By an extension, these
conditions were relaxed by taking into account a kinetic interface undercooling and deviations
from chemical equilibrium at the solidification front of alloys [3]. The latter one is described
by a velocity dependent partition coefficient k(V) according to the solute trapping model by
Aziz [4]. As a further extension, not only deviations from local equilibrium at the interface
but also in the bulk melt near by the interface are taken into account [5].

At the same time experimental techniques were developed to measure quantitatively the den-
drite growth velocity as a function of undercooling on levitation processed drops [6, 7]. In
these experiments metallic drops were melted and containerlessly undercooled and solidified.
The growth velocity was determined by measuring the time needed by the solidification front
to propagate through the entire sample through a well-defined observation window [7]. In the
present work measurements of the dendrite growth velocity on nominally pure nickel are pre-
sented. Experimental results are obtained by employing three different experimental tech-
niques, which deliver data of high accuracy and good reproducibility at small, medium and
high undercoolings. The experimental results are analyzed within the sharp interface model
based upon the work of Wilfried Kurz et al. This model was extended by including effects of
mass and heat transport due to fluid flow motion caused by convection and electromagnetic
stirring of levitated melts and applying solvability theory for the independent determination of
the dendrite tip radius. These results are compared with experimental data and predictions of
phase field modeling.

Experiments

Undercoolings of pure transition metals up to several hundred degree centigrade are achieved
by the application of electro-magnetic levitation techniques the details of which are described
in detail elsewhere [8]. Photo sensors (PS) are used to measure the dendrite growth velocity of
levitation undercooled melts. Figure 1 shows the experimental set up. The photo-sensors are
arranged perpendicular to the symmetry axis of the coil. The solidification of the sample is
externally nucleated by a trigger needle, which is touching the surface of the sample at its
bottom. Solidification starts at this point and the dendrites propagate isotropically through the
volume of the sample. A small part of the equatorial sample surface is imaged by an optical
system on the sensitive area of the photodiodes. The growth velocity, V, is obtained by divid-
ing the solidification pathway, ∆s, by the measured time, ∆t, needed by the solidification front
to propagate through the observation window, V = ∆s/∆t. Thereby, it is assumed that the so-
lidification front can be approximated by the envelope of the dendrite tips. This assumption is
justified at medium and particularly at high undercoolings, where many small dendrites are
formed, but it is violated at small undercoolings where only a few thick dendrites are propa-
gating through the melt. Accordingly, the scatter and uncertainty of the measurements by us-
ing the PS are increasing with decreasing undercooling.

To measure the dendrite growth velocity at small and medium undercoolings also with high
reliability and reproducibility, we developed a capacity proximity sensor (CPS) [9]. The set
up is schematically illustrated in Figure 1. It consists of a nucleation trigger needle made of
the same material as the sample. The needle is part of a resistance - capacitance (RC) electri-
cal circuit whose resonance frequency is measured. If the needle is touching the sample and



initiates solidification, the capacitance of the RC – circuit changes abruptly. The time, t1, of
initiating crystallization is measured by a sudden change of the output signal of the RC circuit
with a time resolution of 1 µs. The counterpart of the triggering point at the opposite side of
the sample is focused by an optical system on the sensitive area of a photodiode. As soon as
the central dendrite is arriving at the top of the sample at time, t2, the signal of the photodiode
rapidly increases. The growth velocity, V, is then obtained by dividing the height of the as-
solidified sample, Do, by the time difference ∆t = t2 – t1: V = Do/∆t.
In addition to PS and CPS, we also apply a high-speed digital camera to observe the propaga-
tion of the solidification front. The camera enables observations of the solidification process
at frame rates of up to 120,000 frames per second (fps) at a resolution of 128¥16 pixel. For
the dendrite growth velocities during solidification of an undercooled Ni melt frame rates of
30,000 fps have proven in a first test to be a good choice for low and medium undercoolings.
This frame rate offers a higher resolution of 256¥128 pixel. Figure 2 gives a sequence of pic-
tures taken during solidification of a Ni sample undercooled by ∆T = 90 K (upper part) and
undercooled by ∆T = 140 K (lower part), respectively [10]. It can be seen that the solidifica-
tion front at the sample surface is of an irregular shape for ∆T = 90 K, while at ∆T = 140 K
the front appears very smooth.

Figure 1: Experimental techniques to measure the growth dynamics of the solidification front in levitation under-
cooled samples: the photodiode method (left hand side) and the capacity sensor technique, CPS (right hand side).

Present measurements of dendrite growth velocities in undercooled levitated nickel melts
were performed for six individual samples of different masses (1.0 g < m < 1.5 g) by using an
improved CPS technique [10]. The experiments provide a data set of dendrite growth veloci-
ties covering the range of undercoolings from 30 K < ∆T < 260 K. In Figure 3 the present
CPS data is shown together with two other data sets: as obtained with a similar CPS technique
by Eckler and Herlach previously [11] and with a high-speed camera by Matson [12], respec-
tively. All three data sets are differing from each other. Beginning at DT ª 65 K the growth
velocity values in the present CPS data are deviating from the previous CPS data to higher
values for 65 K < DT < 180 K. The region of maximum discrepancy between both data sets is
found in the interval 105 K < DT < 132 K. In the previous CPS data set this region is followed



by a steep increase in the velocity accretion with increasing undercooling, resulting in a merge
of both CPS data sets at approximately DT ª 180 K. At ∆T < 65 K as well as at ∆T >180 K
both CPS data sets are in good agreement. In comparison with the camera data of Matson et
al. [12] the present CPS data shows a deviation to lower growth velocities, starting already at
DT ª 55 K, and both data sets are in agreement at DT ≥ 165 K.

Figure 2: Propagation of the solidification front (light gray) through an undercooled Ni melt (dark gray) for DT ª
90 K (a) and DT ª 140 K (b). Both sequences were recorded at a frame rate of 30,000 fps, for 90 K only each
fifth image is shown. Triggering occurred at the bottom of the sample, which is to the left in this display. A small
part (ª 15%) of the sample’s bottom part is hidden by the coil. A clear difference in the appearance of the solidi-
fication front in both image sequences can be seen.

There is a clear discrepancy in both CPS data sets, intimating that an effect might be respon-
sible for the discrepancy that is independent from the experimental technique/hardware. In
order to demonstrate more clearly the different growth velocity versus undercooling depend-
ence, all three data sets are plotted in a double logarithmic diagram, and a third order polyno-
mial was fitted to each of the data sets. As can be seen from Figure 3, both the present CPS
data and the camera data by Matson et al. [12] show a rather monotonous increase (following
a power law) until the breakpoint at DT* ª 180 K is reached, at which the temperature de-
pendence of V(∆T) changes. On the contrary, the previous CPS data reveals a distinct change
in the velocity/undercooling relationship at ∆T < ∆T*.

Figure 3: All three data
sets under consideration
in double logarithmic
diagram [10]. Also
shown are the results of
a third order polynomial
fit to each of the three
independent data sets. It
can be seen that the
velocity accretion with
increasing undercooling
is rather monotonous for
Matson’s data [12] as
well as for the present
CPS data, while a clear
change of the velocity –
under-cooling charac-
teristics can be seen in
the previous CPS data
by Eckler and Herlach
[11].

In order to find an explanation for the observed discrepancies in the data sets we analyzed the
Ni samples that were used in our investigation for their purity by chemical spectroscopy. The
outcome of this analysis as an average of investigations of four different samples is given in
Table 1. The overall amount of impurities is in the order of 0.01at%, with carbon as the main



constituent of the impurities. Carbon, if not being present in the sample at time of distribution
of the Ni rod, might be introduced to the sample during the process of sample cutting – before
and after levitation – although each sample was cleaned with Propanol before each experi-
ment. The results of the chemical purity analysis may suggest that the samples even though
prepared from Ni of nominal purity of 99.99 may contain a slightly higher amount of impuri-
ties than 99.99 in particular if also non-metallic elements are taken into account. When impu-
rities show a very small partition coefficient when alloying to nickel they may influence the
dendrite growth dynamics seriously even at very small concentration. The essential influence
of strongly partitioning elements on the dendrite growth dynamics when adding to pure Ni has
been shown by measurements on dilute Ni-B [13] and Ni-Zr [14] alloys. The degree of impu-
rities might vary between individual samples. This could explain the higher degree of scat-
tering present in the previous CPS data.

Table 1: Results of chemical analysis of sample purity. Due to the use of a HeH2 -gas as protection atmosphere
and for the sample cooling, the amount of O2 has decreased during experiment by a factor of two while the con-
tent of H2 has increased by a factor of five. It can be seen that the overall purity of the sample has been improved
during the course of the experiment.

Ni
O2

ppm
H2

ppm
C

ppm
Si

ppm
Fe

ppm
Co

ppm
Total
ppm

(at%)
unprocessed 19.2 0.75 56 18 4 2 99.95

(0.009995)
processed 10.4 3.86 49 10 3 3 79.26

(0.007926)
average 14.8 2.305 52.5 14 3.5 2.5 89.61

(0.0089.61)

Sharp interface model for dendrite growth in levitation processed drops

Electromagnetic levitation exhibits complicated phenomena of interaction of heat transport
and electromagnetic fields with the existing moving solid-liquid interface. For instance, heat-
ing and cooling of a droplet, the flow of the induced current, the inclusion of the liquid phase
of the droplet into the forced flow due to the Lorentz force caused by the alternating electro-
magnetic field, and the solidification process itself lead to these complicated phenomena [15].
The situation of forces acting on levitated drops is sketched in Figure 4.

Figure 4: A metallic sample, which is placed into an
alternating electromagnetic field as present in a levita-
tion coil, which is represented by one copper winding.
The alternating electromagnetic field causes a levita-
tion force FL that counteracts the gravitational force FG

and leads to levitation if FL = FG. Simultaneously, the
alternating magnetic field induces eddy currents, which
heat up the sample but also produce strong electromag-
netically induced stirring, which changes the conditions
of heat and mass transport in the liquid sample in addi-
tion to natural convection.

The influence of an external forced flow imposed on the growing dendrite in undercooled
pure melt has been treated theoretically during the past two decades [16, 17, 18, 19, 20, 21].
Taking into account the effect of forced convective flow on dendritic growth in a levitated



droplet the LGK/LKT model [22, 23, 3] has been modified and extended [15]. Following the
extended model, the final system of equations can be presented as follows.

We consider an axi-symmetric parabolic shape of the dendrite tip, which has the interface
temperature Ti and propagates into the undercooled melt with the constant velocity V. The
total undercooling DT = TL – T∞  at the dendrite tip of a pure metal consists of the following
contributions:

∆T = ∆TT + ∆TR + ∆TK (1)

Here: ∆TT = Ti - T• is the thermal undercooling for removal of the latent heat released at the
dendrite tip and it is described by

† 

DTT = TQPeg ⋅ exp(Peg + Pe f ) ⋅ h-1

1

•

Ú ⋅ exp -hPeg + (lnh -h)Pe f[ ] dh (2)

where R is the tip radius of the parabolic dendrite, TQ is the adiabatic temperature of solidifi-
cation, Peg = V R/(2a) is the thermal Péclet number, Pef = Uo R/(2a) is the flow Péclet num-
ber; Uo is the velocity of the uniformly forced flow far from the dendrite tip, and a is the
thermal diffusivity. The flow velocity Uo can be defined from a special consideration of the
energy balance for the energies of the electromagnetic field, the gravitational field, and the
viscous dissipation [15]. This yields
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where g is the modulus of vector of the gravity acceleration, r is the mass density and µ is the
dynamic viscosity of the liquid phase. In this case, the velocity Uo included in the thermal
undercooling (2) as a free parameter becomes now independently defined from Eq. (3) for the
EML process.

The penetration depth d of the electromagnetic field in Eq. (3) is considered as a skin depth of
the surrounding high frequency magnetic field into the sample and hence the region where the
induced eddy current provides for the heating. The skin depth d is defined by the electric and
magnetic parameters as follows:

† 

d =
2

ws gmo

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

1/ 2

(4)

where sg is the electric conductivity (measured under isothermal conditions), µo is the mag-
netic permeability, and w is the frequency of the applied current. d is considered as a skin
depth for the alternating magnetic field in the liquid droplet, which decreases for a short dis-
tance at which the magnetic field decays exponentially

† 

B = Bo ⋅ exp (r - Ro) /d[ ]
where |B| is the modulus of the magnetic induction vector, Bo is the time averaged value of the
magnetic induction, and r is the radial distance of a droplet of the radius Ro.

In Eq. (1), the curvature undercooling ∆TR due to the Gibbs-Thomson effect is described by

† 

DTR = 2G(1-ec cos4q) /R (5)

where G is the capillary constant (Gibbs-Thomson parameter), ec is the parameter of anisot-
ropy of the surface energy, and q  is the angle between the normal to the interface and the
direction of growth along the z-axis. The kinetic undercooling KTD  which is necessary for the
attachment of atoms to the interface is described by



† 

DTK = V /mK , mK = mK 0 (1-eK cos4q) (6)

where µK is the kinetic coefficient for growth of the dendrite tip, eK is the parameter of anisot-
ropy for the growth kinetics.

Taking into account Eqs.(1) - (6), it results a single equation for the dendrite tip velocity V
and dendrite tip radius R. From solvability theory, an independent expression for the dendrite
tip radius R is obtained [18]

† 

R =
G

s * TQPeg

(7)

with the stability parameter *s  given by

† 

s* = s o ⋅ec
7 / 4 1+ c(Re)UoG

aTQ
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-1

(8)

where so is a constant; Re=UoR/µ is the Reynolds number. The function c(Re) can be found
from Ref. [18] (with adaptation of the analytical results to the 3D solution). For computation
of the stability parameter s* we choose the results of phase-field modeling [20] accordingly
with

† 

s oec
7 / 4 /s* =1.675

for the 3D upstream fluid flow imposed on the scale of a freely growing dendrite.

Note that the selection criterion for the growth mode given by Eqs.(7) - (8) is only true for the
relatively small undercoolings, i.e. when the direction of growth of the dendrite is dictated by
the anisotropy of surface energy and the imposed direction of the liquid flow. Obviously,
when the solidification of a stagnant undercooled melt occurs, i.e. with Uo = 0, and for the
isotropic surface energy and growth kinetics, i.e. with ec = 0 and eK = 0, one gets the LKT
model [3] as a partial limit for Eqs. (1)-(8). Thus, from the system of two main equations (1)
and (7) the velocity V and tip radius R of the dendrite can be calculated as a function of the
initial undercooling ∆T.

Results on “nominally” pure Ni

We have shown [15] that the inclusion of a forced convective flow into the model of dendritic
growth gives partially satisfactory description of experimental data at small undercoolings
previously obtained by Eckler and Herlach utilizing the CPS technique [11]. Now we compare
the predictions of the present model Eqs. (1)-(8) with the new results (cf. Figure 5) on den-
dritic growth velocity on nominally pure Ni as measured by an improved CPS technique of
the present work.

The analysis of Brener [24, 25] and Brener and Melinikov [26] shows that, for a pure system
solidifying at higher undercooling, the anisotropy of kinetics plays a crucial role in selection
of the dendritic growth mode. This model can be taken from Eqs. (1)-(6) as the limiting case
of Uo = 0 and with the selection criterion for the growth mode consistent with both the anisot-
ropies of surface energy and growth kinetics. The parameters of anisotropy ec and ek are taken
from data of atomistic simulations of Hoyt et al. [27, 28], which have been linked recently
with the phase-field simulations of Bragard et al. [29] for analysis of dendritic growth in a
wide range of undercoolings. The values for the atomic kinetic growth coefficient as resulting
from atomistic simulations are lower for approximately 4-5 times than predicted by the colli-
sion-limited theory of Coriell and Turnbull [30]. The former values are rather well compared
with the values found from previous molecular-dynamic simulation data of Broughton et al.
[31]. Also, to adjust the kinetics of rapid dendritic growth of nickel based alloys, Galenko and
Danilov [5, 32] found agreement between experiment and theory only if the kinetic under-



cooling ∆Tk is assumed to be by a factor of 5 larger than predicted by the theory of collision-
limited growth. These findings might be explained due to more complicated behavior of the
atomic attachment kinetics at the solid-liquid interface. To model dendrite growth kinetics of
nickel, material parameters are used as given in Table 2.

As Figure 5 illustrates, Brener’s theory without convection [24, 25] leads to deviations from
the experimental data at small undercoolings DT < 100 K whereas it predicts the experimental
data quite well at higher undercoolings DT > 150 K. This finding confirms the assumption that
the convection enhances the dendrite growth velocity at small undercoolings and shows the
essential role of anisotropy of the growth kinetics at higher undercoolings.

Table 2: Material's parameters of nickel and characteristics of the electromagnetic facility used in calculations.

Parameter Symbol Numerical value

Adiabatic temperature TQ 418 [K]
Density r 8.1•103 [kg/m3]

Dynamic viscosity µ 4.3•10-3 [Pa•s]
Thermal diffusivity a 1.2•10-5 [m2/s]

Gibbs-Thomson parameter Go 3.4•10-7 [K•m]
Angle between the normal to the interface and

the dendrite growth direction
q  0 [deg]

Parameter of anisotropy of surface energy ec 1.8•10-2 [-]
Parameter of kinetic anisotropy (taken for the

theory [27])
ek 1.3•10-1 [-]

Electric conductivity sR 4.1•106 [W•m]
Magnetic permeability µo 4"•10-7 [H/m]

Frequency of the applied current w 3.0•105 [Hz]

Figure 5. Comparison of model
predictions with the experimental
data on dendrite tip growth for
pure Ni. The solid line 1 shows
the effect of anisotropy of kinetics
predicted by the analytical theory
of Brener [24, 25]. Predictions of
the present model are given by the
dashed line and dashed-dotted
line which represent the effect of
convective flow with different
isotropic kinetic coefficients. The
velocity of upstream flow im-
posed on dendrite has been cal-
culated from Eqs. (3) and (4) as
the value of U0  = 1.4 m/s.

An inclusion of convection by Eqs.(1)-(8) enhances the dendrite velocity and leads to a partial
agreement with experimental data at small undercoolings DT < 100 K when the flow has the
velocity U0 = 1.4 m/s as one of the limiting speeds for the established assumptions of the pre-
sent model for the forced flow in laminar regime. This effect of the forced flow on dendritic
growth is shown by the curves 2 and 3 in Figure 5. Note that without anisotropy of kinetics



and with the averaged kinetic coefficient µk =0.45 (m/s/K) [27, 29] the velocity-undercooling
curve 3 deviates significantly from the experimental data at medium and high undercoolings
DT > 100 K. For the case of ideal collision-limited growth [30] with the averaged kinetic co-
efficient µk =1.2 (m/s/K) the experiment might be described satisfactorily within the medium
undercooling range 100 K < DT < 180 K. However, as it is known from theory [26, 29], den-
drite growth does not occur without crystalline anisotropy, especially, at high undercoolings
when the role of the anisotropy of the surface energy vanishes. Therefore as it is shown by the
application of the model [26] (see curve 1 in Figure 5), when the effect of the forced flow on
the dendritic growth is negligible at medium and high undercoolings, the dendrite velocity is
enhancing due to the presence of kinetic anisotropy. The details of modeling results with tak-
ing into account effects of convection and both anisotropies of surface energy and kinetics are
summarized in the following section.

The phase-field modeling

The phase-field model was suggested and developed for the description of phase transitions in
condensed matter with diffuse phase interfaces [33, 34, 35, 36]. In the present investigation,
we have used the “thin-interface” analysis of the phase-field model [37, 38] where the inter-
face thickness is assumed to be small compared to the scale of the crystal but not smaller than
the microscopic capillary length. The thin-interface limit is ideally suited to model dendritic
growth in pure materials quantitatively at low undercooling when used in conjunction with
efficient numerical algorithms [38, 39].

The phase-field and energy equations were taken from the model of Karma and Rappel [37,
38] with the momentum and continuity equations of motion of the liquid phase taken from
Beckermann et al. [39]. Furthermore, in the momentum equation, the additional force for the
motion of the liquid phase in undercooled droplet, i.e. averaged in time Lorentz force, has
been introduced. These governing equations have been solved numerically on the uniformed
numerical grid with application of the special numerical algorithms. Constants of modeling
applicable to the pure nickel and analysis of the results will be presented elsewhere [40].

Figure 6. Dendrite growth with convective flow at ∆T
= 0.30 and U0 = 0.7 m/s. Growth velocity V of the up-
stream branch is most pronounced in comparison
with the down-stream branch due to forced convec-
tion with the far field flow speed U0. The dashed
lines around the dendrite indicate the flow velocity
vectors in the vertical cross-section.



The phase-field modeling exhibits an increase of the velocity of the up-stream dendrite branch
in comparison with the dendrite tip velocity in a stagnant melt (cf. Figure 6). Therefore, for
the flow in a levitated droplet, we are expecting an enhanced dendrite velocity, which might
decrease the disagreement between experimental data and predictions of theory without con-
vection. Figure 7 shows the quantitative comparison of the predictions of the results of present
phase-field modeling with the previous [11] and present (see experimental section of this
work) experimental data for growth kinetics of nickel dendrites.

Figure 7. Comparison of the results of the phase-field modeling for pure system in stagnant melt (stars) and the
same phase-field modeling with taking inro account the thermal convection and calculated effects from the sol-
ute diffusion (filled squares) with the present experimental data on solidification kinetics of Nickel dendrites
(open squares).

Our analysis [40] reveals that

(i) the dendrite velocity is greater in the direction opposite to the flow (Figure 6), the dendrite
growth velocities extracted from the results of the phase-field modeling are still in disagree-
ment with the experimental results in the region of small undercoolings, and the maximum
disagreement is observed at the undercooling around DT ª 120 K;

(ii) the quantity of impurities on the level of Coª0.01 at.% can strongly influence the growth
kinetics in undercooled nickel.

We have used the sharp-interface model of dendrite growth [5, 32] to evaluate the influence
of the solute diffusion on growth kinetics and the disagreement between this theoretical pre-
diction and the present experimental data on growth of Nickel dendrites. We have shown, that
the solute diffusion effects compensate the disagreement of the theoretical predictions ob-
tained for the thermal convective effects in this region of undercoolings. Using the results of
the present phase-field modeling (for evaluation of the effect of convective flow on the den-
dritic growth) and the sharp-interface model (for evaluation of the solute diffusion effects of



tiny impurities on the dendrite tip velocity), we summarized the contributions from the ther-
mal convection and solute diffusion and then added them to the results of the phase-field
model without convection. The final result is shown in Figure 7 in comparison with the pre-
sent experimental data for free dendrite growth in undercooled nickel melts. Figure 7 shows
that we obtain a good agreement with experimental data provided both effects, convection
(small and intermediate undercoolings) and solute diffusion (intermediate and large under-
coolings) are taken into account. In the region of intermediate undercoolings ≈120-170 K, the
summarized effects of convection and solute diffusion completely compensate the disagree-
ment.

Summary

We have presented experimental results of measurements of dendrite growth velocities in
undercooled melts of nickel processed containerlessly by electromagnetic levitation chamber.
Three different experimental techniques have been applied for these studies to measure the
growth dynamics with high reliability at large undercoolings (photo sensors), medium under-
cooling (capacity proximity sensor) and low undercoolings (high speed CD camera). The
sharp interface theory of free dendrite growth developed by Wilfried Kurz et al. has been ex-
tended to include effects of fluid flow on mass and heat transport in drops of melts, which are
containerlessly processed in alternating electromagnetic fields. The experimental results were
analyzed within this model leading to the conclusions that fluid flow in the melt by forced
convection due to electromagnetic stirring enhances the growth velocity in the small under-
cooling range at which the dendrite growth velocity is comparable to the speed of fluid flow.
In addition, it is demonstrated that even small amounts of impurities lead to an increase of the
growth velocity in the range of small undercoolings at which the growth is then controlled by
diffusion of the impurities. The solute effect, however, shows a different temperature charac-
teristics than the transport effect by fluid flow, which makes it possible to discriminate be-
tween both these effects by investigating the growth velocities as a function of undercooling.
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