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a b s t r a c t

Phase-field method uses a non-conserved order parameter to define the phase state of a system and is a
versatile method for moving boundary problems. It is a method of choice for simulating microstructure
evolution in the domain of materials engineering. Solution of phase-field evolution equations avoids
explicit tracking of interfaces and is often implemented on a structured grid to capture microstructure
evolution in a simple and elegant manner. Restrictions on the grid size to accurately capture the interface
curvature effects lead to large number of grid points in the computational domain and render the
simulation computationally intensive for realistic simulations in 3D. However, the availability of powerful
heterogeneous computing platforms and super clusters provides the advantage to perform large scale
phase-field simulations efficiently. This paper discusses a portable implementation to extend simulations
across multiple CPUs using MPI to include use of GPUs using OpenCL. The solution scheme adapts an
isotropic stencil that avoids grid-induced anisotropy. Use of separate OpenCL kernels for problem specific
portions of the code ensure that the approach canbe extended to different problems. Performance analysis
of parallel strategies used in the study illustrate the massively parallel computing possibility for phase-
field simulations across heterogeneous platforms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phase-field method is an emerging technique for simulating microstructure evolution during phase transformations, which uses
a non conserved order parameter to define the phase state of a system [1–6]. Microstructure evolution occurs by the minimization
of a Ginzburg–Landau type free energy functional with respect to an order parameter φ along with other field parameters such as,
temperature T and concentration c . The phase-field method is generally considered as an alternative technique to the more complex
front tracking methods for moving boundary problems. It involves solution of a set of non-linear PDEs at every point in the spatial domain
making it computationally demanding. Solution on domains with large number of grids is now possible due to increasing availability
of computational power. Compute intensive applications are able to capitalize on multicore and superscalar CPUs for high performance
computing. This has made distributed parallel architectures finding place in the computing roadmap for the next 30 years [7]. Several
hybrid implementations are now becoming available to harness the potential of high performance heterogeneous platforms [8–12]. Large
scale computations that are also memory intensive require use of multiple processors to be able to perform the simulations. In this
study, we explore the combination of MPI library for communication along with OpenCL for GPU computation to perform large scale
3-D simulations. This attempt is the first such application of the MPI+ OpenCL hybrid technique to phase-field method.

Voller and Porté-Agel [13] put forth the fact that the largest grid sizes that were used in simulation studies in a given year scaled
according to Moore’s law. However, literature pertaining to parallel implementation of the phase-field method is limited. One of the
first parallel phase-field simulations was attempted by George et al. [14] to simulate an alloy dendrite growth in 3-D. Suwa et al. [15]
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performed a MPI implementation of a multi-phase-field model for three dimensional grain growth. A shared memory parallelization
of single component solidification was done by Xu et al. [16], which was further extended to study multiscale convection through
distributed computing [17]. It was not until 2011, that AOKI Laboratories at Tokyo Tech GSIC was credited with running the first large
scale computations on the growth of alloy dendrite clusters on the TSUBAME 2.0 [18,19,10,11]. A cluster of Al–Si alloy dendrites was
grown on a grid of 4096×6500×10400 andwhich achieved 2.0000045 PFlops for which Shimokawabe et al. [18] were awarded the 2011
Gordon Bell prize.

Though phase-field computations on the GPU were performed on a large scale and have shown the remarkable power of the GPU in
speeding up the execution of phase-field codes, theywere largely based on CUDA implementations and hencewere constrained to run only
on NVIDIA R⃝ cards [18,19,10,11]. OpenCL specification holds the following advantages: (i) open standard; (ii) cross platform and vendor
independent [20–22] and (iii) allows low-level access to hardware [23,24,20,25,26]. Till date, there is no parallel implementation nor an
evaluation of a phase-field technique using the OpenCL specification.

This paper discusses the following: (i) A brief description on the phase-field model used and realistic Gibbs energy functions employed
for the relevant phases. Parameter relations while bridging these two methods are also highlighted. (ii) An OpenCL solver for solving the
governing equations on single and multiple GPUs (MPI + OpenCL). (iii) Performance metrics for the solver across all platforms (CPU,
GPU and multiple GPUs). This study highlights the portable usage of stencil based computation across heterogeneous platforms. The
authors would like to emphasize that this is not the only solution method, but one that have been implemented by them. A comparison
between OpenCL implementation across different GPU architectures (NVIDIA R⃝ and ATI Radeon R⃝) has also been presented to demonstrate
portability. Domain sizes are chosen such that memory limits are well within the specifications for each cards.

2. Phase-field model

An isothermal binary alloy phase-field model with anti-trapping current by Kim [27] is used for the simulations. Alloy solidification
involves both heat and mass transfer. However, since these two processes are occurring at two different time scales, in most cases, it is
sufficient enough to consider the slower of the two, namely, mass transfer. Heat transfer is usually two orders of magnitude faster than
solute diffusivity and temperature evolves much rapidly compared to solute redistribution. Hence, thermal field can usually be treated as
frozen or isothermal so that the process can be assumed to take place in a quasi-steady state.

The total free energy which must decrease during an isothermal process is given by,
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
V
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where f (φ, c, T ) is the homogeneous free energy density which is a function of the order parameter φ, composition c and temperature T .
εφ and εc are the gradient energy coefficients for phase-field and composition, respectively.

Although, simulating the evolution of complex morphologies is quite straightforward with this method, making quantitative
predictions on experimentally relevant length and time scales has remained a major challenge. In such cases, the width of the diffuse
interface δ and the characteristic time scale τ , being microscopic, will not be able to resolve a typical experimental length/time scales
even with efficient algorithms. In the light of the above, the only way to proceed with the simulations would be increase the interface
width and the time scale of the simulations. But the bloating of the diffuse width, though sounding computationally feasible, has its own
inherent disadvantages, such as, (i) solute diffusion/surface diffusion along the arc length of the interface, (ii) interface stretching due to
themoving curved interface thereby leading to amodification of themass conservation equation at the interface and (iii) a discontinuity of
the chemical potential across the interface leading to solute trapping [28–30]. The magnitude of these effects scales up with the interface
width.

The first two of these effects can be nullified by a nonvariational approach which can be more computationally efficient than a strictly
variational formulation [31]. In general, a nonvariational approach involves using different interpolation functions for the evolution
equations: p(φ) for the phase-field and h(φ) for the diffusion equation and s(φ) for the composition profiles, thereby decoupling the phase-
field equation from the diffusion equation. The third effect is the anomalous jump in the chemical potential (solute trapping) during low
speed solidification. This is avoided by using an anti-trapping current, an additional solute current introduced, which pushes the solute
out of the solidifying material.

The evolution equations to be solved for are:

∂φ

∂t
= Mφ


ε2
φ∇

2φ −W
dgw(φ)

dφ
−

dp(φ)

dφ
fD


(2)

∂c
∂t
= ∇ · [(1− h(φ))DL∇cL] + ∇ · jat (3)

where fD is the driving force for the phase transformation and jat is the anti-trapping current given by,
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Table 1
Redlich–Kister coefficients for the Al–Mg system in J/mol [34].

v aφ
v bφ

v

φ = liq 0 −9019 4.794
1 −1093 1.412
2 494 0

φ = fcc 0 1593 2.149
1 1014 −0.660
2 −673 0

The solid and liquid compositions cS and cL, need to be solved iteratively at every time step and each spatial point through the solution
of the following auxiliary equations,

c = s(φ)cS + (1− s(φ))cL (6)

∂ f S

∂cS
(cS(x, t)) =

∂ f L

∂cL
(cL(x, t)). (7)

f (φ, c, T ) is the homogeneous free energy density which is a function of the phase-field φ, composition c and temperature T . f S, f L are
the free energy densities of the solid and liquid phases, respectively. α(φ) is a coupling coefficient for the non-variational formulation
involving the interpolation functions p(φ), h(φ) and h(φ). Other model parameters are the double well potential gw(φ), the energy
barrierW , phase-field mobilityMφ and solute diffusivity DL. Description of these model parameters and the formulation of the governing
equations, numerical approaches are presented elsewhere [32].

3. Thermodynamic description and models

A thermodynamic description of a phase requires the assignment of Gibbs energy functions for each phase under consideration. In this
context, CALPHAD provides a means to find required Gibbs energy functions through thermodynamic modeling. The CALPHAD method
employs a variety of models to describe the temperature, pressure and composition dependencies of the Gibbs energy functions of various
phases. In the present work, Al–Mg binary is chosen by considering two phases: liquid and fcc solid solution. The molar Gibbs energy for
both the phases are modeled using random substitutional solution and is expressed as,

Gm = xA◦GA + xB◦GB + RT (xA ln xA + xB ln xB)+ xAxB
n

v=0

vLAB(xA − xB)v (8)

where ◦GA,B is the reference molar Gibbs energy of the elements A, B in their pure state, the third term is the ideal Gibbs energy of mixing
and the fourth, excess contribution to the Gibbs energy arising due to the non ideal interaction between the elements. The Redlich–Kister
coefficients for the binary excess model are expanded as vLAB = av+ bv T for each phase. The Gibbs energy functions of the pure elements
in their stable and metastable states are taken from the Scientific Group Thermodata Europe (SGTE) database [33] and the excess Gibbs
energies for Al–Mg are taken from [34] and shown in Table 1.

3.1. Relating phase-field and CALPHAD

In most phase-field formulations, volume free energy densities, f , are used to describe the free energy functional F , which could be
either Helmholtz or Gibbs energies. However, to evaluate the chemical contribution of the free energies in using the thermodynamic
functions obtained through CALPHAD, molar Gibbs energy densities, g , are preferred [35]. Assuming molar volumes vm to be the same for
both phases, the volume free energy density f can be replaced with molar Gibbs energy densities g and the molar concentration ci with xi
through,

xi =
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ntot
(9)

and

ci =
ni

V
=

xi
vm

(10)

where, ni and xi are the amount and the mole fraction of the solute i, respectively and V , the total volume of the system. The free energy
density f is related to Gibbs energy density g by

f (φ, c) =
1
vm

g(φ, xB). (11)

Reformulating the phase-field and concentration equations incorporating this change of variables from c to xB and f to g in Eqs. (2) and
(3), we get,
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Fig. 1. Al-rich corner of Al–Mg, computed using CALPHAD description of Gibbs energies.

Here, µ is the slope of gL with respect to xLB. The phase boundaries of the liquidus and solidus for the Al-rich corner of Al–Mg are
calculated using Gibbs energy functions of the phases in question as shown in Fig. 1. For a given T and P , the unknowns xLB and xSB are
calculated by the equal chemical potential condition given in Eq. (7).

The application of realistic thermodynamic functions is now possible by incorporating the above mentioned polynomial expressions
for Gibbs energy as free energy density functions in the formulation. The authors believe that the simple nature of these functions enables
a fast computation of realistic thermodynamic data as compared to the API route. The polynomial expressions in Eq. (8) and Table 1 are
directly hard-coded into the program. The functions that contain these polynomials are kept modular for each system. The advantage of
the entire source code being developed as part of this study enabled hard-coding of these functions to gain compile time optimizations by
the compiler and lead to faster computation. This is important as the compilation time is negligible compared to the execution time for
these programs.

4. Numerical approach

GPU performance benchmarks done for continuum CFD in CPU and GPU reported that implicit solvers gave a performance gain of 5X
as compared to the 15X gain in using explicit solvers against the CPU framework [36]. This has encouraged the authors to explore similar
performance gains using explicit solution scheme in phase-field method. Although, implicit approaches do take away the restriction on
the time interval for numerical stability, parallelization of implicit schemes is often not straightforward. Also, use of explicit schemes
renders the problem easily parallelizable across massively parallel architectures. In this study, an explicit Euler scheme was used for time
discretization.

A finite difference approach was used to discretize the governing equations. An explicit forward difference in time and first order
central difference in space for the gradients and a second order central difference for the Laplacianswere used. Inmost conventional finite-
differences used for the discretization of PDEs, an anisotropy is introduced into the numerical scheme, which comes from the directional
bias of the error terms in the discretization. In order to preserve the symmetry in the simulation andmitigate the effect of grid anisotropy,
a more generalized isotropic scheme for calculating the Laplacian was used [37]. A 9 point Laplacian for 2-D and a 27 point Laplacian for
3-Dwere utilized and their corresponding discretization schemes are given by Eq. (14) and Eq. (15), respectively. Computation of Laplacian
using this scheme produces both faster as well as more rotationally symmetric results. Assuming uniform grid spacing (∆x) along all three
directions for simplicity of expression for illustration, we can write the Laplacian as follows.

∇
2
φ =

1
6∆x2

[(φi−1,j+1 + φi+1,j+1 + φi+1,j−1 + φi−1,j−1)+ 4(φi−1,j + φi+1,j + φi,j+1 + φi,j−1)− 20φi,j]. (14)

A 27-point Laplacian, though discernibly large, can be expressed in terms of their positions on a cube. The 27 points can be split up as
those that occupy the corners (8), edge centers (12), face centers (6) and body center (1).
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where, Nf are the face points on the cube, Nc are the corner points, Ne are the edge centered points and φi being the body centered point.

4.1. Discretization of the anti-trapping current and off-grid locations

In order to solve the diffusion equation (Eq. (3)) with the anti-trapping current, ∂φ

∂t is required. Discretization of the anti-trapping
current was done along similar lines as in the literature [38].

To calculate all the quantities at each grid point i, j, k with second order accuracy in space, it is required to calculate the gradients at
the off-grid locations i.e. at half the cell size in each direction. The values of h(φ) in Eq. (13) are determined at the off-grid positions by
averaging the values of the neighboring nodes in each direction.
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Fig. 2. (a) 9-point stencil and (b) 27-point stencil.

Table 2
Magnitude of the antitrapping current jat as a function of interface width δ in
comparison with one of the diffusion terms (1− h(φ))∇cL .

Interface width δ
(1−h(φ))∇cL

φ(1−φ)

jat
φ(1−φ)

600 0.0925 0.0089
700 0.1074 0.0103
800 0.1227 0.0118
900 0.1372 0.0133

1000 0.1528 0.0148

4.2. Stencils

The discretization of first and second order differentials and the requirement of gradient terms at the staggered grid locations reminds
one of a similarmethod used for solving convection–diffusion problems [39]. The numerical techniques elucidated in Patankar’s celebrated
book [39] to solve problems of this kind include the application of Tri-Diagonal Matrix Algorithm (TDMA), Alternate Direct Implicit (ADI)
method and iterative schemes to evaluate nodal and staggered grid values. These algorithms are array based, require considerable effort
to convert to be massively parallel and the solvers are to be written for each type of platform used for implementation.

In this study, instead of solving the problem by taking the entire array as input, a stencil based solver is employed. A stencil is created
at every node point in the domain depending on the dimension. In order to accommodate the points required for the gradients and the
Laplacian, a ‘Moore’ neighborhood stencil is chosen, where the number of points in the stencil grid is 9 for 2-D and 27 for 3-D, shown in
Fig. 2(a) and Fig. 2(b), respectively. A stencil computation is characterized by updating each point in a structured grid by an expression
depending on the values on a fixed geometrical structure of neighboring grid points. In our context, a rectilinear grid is assumed, which
from a hardware architecture point of view is favored due to the regularity of the data access pattern. This allows using the hardware
prefetcher in an optimal way and streaming in the data from the main memory to the compute elements [40].

The practical advantage of using a stencil based solver is that the code can be readily ported across different platforms. In both cases
(CPU and GPU), the stencil based solver is identical. This is because all the desired points for the gradients and the Laplacian are present
within the stencil and as a result all the calculations can be performed within the stencil for that particular node point (i, j, k).

4.3. Effect of anti-trapping current on the tip velocity

Table 2 shows themagnitude of the anti-trapping current as a function of interface width. One of the diffusion terms is also given along
for comparison. These numbers are normalized with respect to the total number of grid points in the interface region. We note that the
anti-trapping current is only about 10% of one of the diffusion terms and is seen to be increasing in magnitude with the interface width. It
should be noted that the magnitude of the antitrapping current though less, has a significant effect in neutralizing the effect of abnormal
chemical potential jump as a result of increased interface width. This results in bringing the interface velocity close to the corresponding
values of the sharp interface model. Fig. 6 shows the velocity invariance with interface width.

5. Parallelization

To parallelize this scheme, a two stage parallelization is done; a MPI communication of (i) φ0 and c0 values to calculate ∂tφ and
(ii) communication of the calculated ∂tφ to calculate φn and cn. Though this process involves communication in two stages for each time
step, it is a fairly simple exchange limiting the number of ghost cells to just a singular array/plane. This procedurewas adopted for both CPU
and GPU. However, only the GPU version of the MPI + OpenCL implementation is discussed here. The CPU solver is used for comparison
of execution times with the GPU.

5.1. Target platforms

The parallel implementation of the phase-field simulations was carried out on a CPU cluster (Virgo) and a GPU cluster (Libra) at IIT
Madras, the details of which are provided in Tables 3 and 4. The number of CPUs that were employed for the simulations presented in this
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Table 3
CPU cluster computing platform (Virgo).

System IBM R⃝x iDataPlex dx360 M4
Chip architecture Intel R⃝ Xeon R⃝ E5-2670
Clock 2.6 GHz
Sockets per node 2
Cores per socket 8
Compute nodes 292
Threads per socket 16
DRAM capacity per node 64 GB
DRAM pin bandwidth 51.2 GB/s

Table 4
GPU platforms.

Platform Cluster (Libra) Desktop
NVIDIA R⃝ M2070 (Tesla) ATI Radeon R⃝ HD5870 (Cypress)

Cluster compute nodes 8 1
GPUs/compute node 3 1
Compute units/GPU 14 20
CPU Intel R⃝ Xeon R⃝ X5670 AMD Phenom R⃝ II X6 1090T
CPU frequency 2.93 GHz 3.2 GHz
Processing elements 448 1600
Core clock frequency 1.147 GHz 850 MHz
Local memory 48 KB 32 KB
Global memory 6 GB 1 GB
Global memory bandwidth 148 GB/s 153.6 GB/s
Peak performance
(float) 1.03 TFlops 2.72 TFlops
(double) 515.2 GFlops 544 GFlops

Fig. 3. Memory model of a typical GPU with reference to OpenCL terminologies.

study was a maximum of 64. Single GPU simulations establishing portability and performance across the architectures were done using
ATI Radeon R⃝ HD5870 and NVIDIA R⃝ M2070. The multiple GPU simulations were carried out on the Libra cluster that contains a total of 24
NVIDIA R⃝ GPUs.

6. Parallel implementation on a single GPU

Implementation on a single GPU proceeds in a rather straightforward manner, where the entire computational domain is processed
by stream cores or the processing elements. OpenCL implements a master–slave architecture, where the ‘host’ (an OpenCL enabled
application) submits work to one or more devices. When a kernel is submitted for execution, an n-dimensional index space is defined.
The application also defines the context of execution. Each context includes the list of target devices, associated command queues and
memory accessible to the devices. OpenCL allows the application to distribute tasks to either the CPU or the GPU explicitly thus making
the load-balancing to be implemented at the application level. In our context, two main buffers, p0 and p, and two intermediate buffers,
cSL and ∂tφ, were required for the solution scheme. p0 and p are arrays of structures holding the phase-field and concentration variables
that are required to be solved and cSL contains the variables cS and cL.

The memory model of a GPU depends on its architecture as shown in Fig. 3. Following is a basic outlook of the programming method-
ology as adopted by the authors on a GPU using OpenCL as the programming language. A simple parallelism approach method is followed
which involves accessing the global memory cache and OpenCL being a low level programming language, it ends with the instruction set
being quite large.
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• Initialize the domain. Allocate memory for the required data structures.
• Identify the compute platforms where the processing needs to be done (CPU, GPU) and get their respective device ids.
• Create a context under which the instructions to be processed are executed. Different contexts can be created on different devices or

the same context can be extended to different devices.
• Inside the context, a command queue is created in which the prioritization of instructions is input.
• Memory buffers are then created which hold the respective structures (phase-field, concentration, cS, cL), which can be designated as

read only, write only and read write.
• The buffers are then queued up on the device memory.

The sample code belowdemonstrates the querying of platforms, the devices present, creation of contexts, command_queues, buffers
and writing buffers on to the device memory.

/*------- Create context and command_queue on the device -------*/
clGetPlatformIDs(1, &platform_id, &return_num_platforms);
clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, no_of_gpus, device_id,
&ret_num_devices);
context=clCreateContext(NULL, 1, &device_id, NULL, NULL, &err);
command_queue = clCreateCommandQueue(context, device_id, 0, &err);

/*------- Create buffers on the device -------*/
device_buffer1 = clCreateBuffer(context, CL_MEM_READ_ONLY,
array_size*sizeof(data_type), array_pointer1, &err);
device_buffer2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
array_size*sizeof(data_type), array_pointer2, &err);

/*------- Copy buffers from host to device -------*/
clEnqueueWriteBuffer( command_queue, device_buffer1, CL_TRUE, 0,
array_size*sizeof(data_type), array_pointer1, 0, NULL, NULL );
clEnqueueWriteBuffer( command_queue, device_buffer2, CL_TRUE, 0,
array_size*sizeof(data_type), array_pointer2, 0, NULL, NULL );

• In OpenCL, the .cl kernel file is read only during execution and hence the program has to be built during runtime and a buffer file has
to be created to hold the errors, if any, which pop up during the compilation of the kernel file during runtime. This is shown below as
a snippet.

#define MAX_SOURCE_SIZE (0x100000)
FILE *fp;
const char fileName[] = "solver_kernel.cl";
size_t source_size;
char *source_str;

/*-------- Load kernel source file ---------*/
fp = fopen(fileName, "rb");
source_str = (char *)malloc(MAX_SOURCE_SIZE);
source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);
fclose(fp);

/*----------- Create kernel from source -----*/
program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &err);

/*----- Build the program for device -------*/
clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
char buildString[100000];
clGetProgramBuildInfo(program, device_id,
CL_PROGRAM_BUILD_LOG, sizeof(char) * 100000, buildString, NULL);

• The kernel files are created which are nothing but the functions that are to be called from the host code and all the kernel arguments
are also needed to be set as shown below.

/*------- Create kernels --------*/
kernel[0] = clCreateKernel(program, "solver_1", &err);
kernel[1] = clCreateKernel(program, "solver_2", &err);
.
.
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kernel[n-1] = clCreateKernel(program, "solver_n-1", &err);

/*------- Set kernel arguments -------*/
clSetKernelArg(kernel[0], 1, sizeof(int), &arg1);
clSetKernelArg(kernel[0], 2, sizeof(int), &arg2);

clSetKernelArg(kernel[1], 1, sizeof(int), &arg1);
clSetKernelArg(kernel[1], 2, sizeof(int), &arg2);
.
.

• Execution of the program starts here and the host calls the required kernels and instructs the compute device to execute the instruction
set in the respective order. Kernels are submitted for execution using clEnqueueNDRangeKernel specifying the dimensions viz.,
workdim= 2, 3 for 2-D or 3-D, respectively.
• All kernel calls are set to execute with the command clFush and clFinish.

for(t=1;t<=ntimesteps;t++){
err=clEnqueueNDRangeKernel( command_queue, kernel[0], workdim, NULL,
array_size, NULL, 0, NULL, NULL );
err=clEnqueueNDRangeKernel( command_queue, kernel[2], workdim, NULL,
array_size, NULL, 0, NULL, NULL );
.
.
err=clEnqueueNDRangeKernel( command_queue, kernel[n-1], workdim, NULL,
array_size, NULL, 0, NULL, NULL );

/*------Read buffer after specified time interval------*/
if((t%saveInterval)==0){
err=clEnqueueReadBuffer ( command_queue, buffer_on_device, CL_TRUE, 0,
array_size*sizeof(data_type), buffer_to_be_read_into, 0, NULL, NULL );

}
}
err=clFlush(command_queue);
err=clFinish(command_queue);

/*All the arguments declared as global reside in the device global memory
The local variables reside in the private memory
struct nodeData contains phi and c
struct cslnodeData contains cs and cl
struct gibbsEnergy contains all free energy variables
struct pdData contains phase diagram data (temperature, composition)
struct pfData contains phase-field data (W, epsilon)
struct grid contains domain data (nx,ny,nz,dx,dt)
*/

kernel void phidotsolver(global nodeData* p0, global cslnodeData* csl,
global gibbsEnergy* myGibbs, global pdData* myKKSpd,
global pfData* myKKSpf, global grid* mygrid, global float* phidot)
{
int col = get_global_id(0);
int row = get_global_id(1);
int dep = get_global_id(2);
/* Initialize all local variables*/

/*---27 point stencil struct to hold the stencil points---*/
nodeData stpc[27];
/*p0 contains the phi and c values at the previous iteration*/

/*------Solving only in the interior nodes-----*/
if(row!=0 && row!=( ny - 1 ) && col!=0 && col!=( nx - 1 ) &&

dep!=0 && dep!=( nz - 1 )){

/*----------------Create stencil for phi and c ------------------------*/
/*----- front face------*/
/*----------------first row-------------------------//
stpc[0]= p0[ ( dep - 1 )*nx*ny + ( row - 1 )*nx + col - 1 ];
stpc[1]= p0[ ( dep - 1 )*nx*ny + ( row - 1 )*nx + col ];
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stpc[2]= p0[ ( dep - 1 )*nx*ny + ( row - 1 )*nx + col + 1 ];
/*---------------second row-------------------------//
stpc[3]= p0[ ( dep - 1 )*nx*ny + row*nx + col - 1 ];
stpc[4]= p0[ ( dep - 1 )*nx*ny + row*nx + col ];
stpc[5]= p0[ ( dep - 1 )*nx*ny + row*nx + col + 1 ];
/*----------------third row-------------------------*/
stpc[6]= p0[ ( dep - 1 )*nx*ny + ( row + 1 )*nx + col - 1 ];
stpc[7]= p0[ ( dep - 1 )*nx*ny + ( row + 1 )*nx + col ];
stpc[8]= p0[ ( dep - 1 )*nx*ny + ( row + 1 )*nx + col + 1 ];
/*--------------------------------------------------*/
/*--Similarly for the middle face (dep) and the rear face (dep+1)---*/

stpc[13] is the i,j,k position

/*--- 27 point Laplacian----*/
/*face centered atoms*/
N_f = stpc[4].phi + stpc[10].phi + stpc[12].phi +
stpc[14].phi + stpc[16].phi + stpc[22].phi;

/*edge centered atoms*/
N_e = stpc[1].phi + stpc[3].phi + stpc[5].phi + stpc[7].phi +
stpc[9].phi + stpc[11].phi + stpc[15].phi + stpc[17].phi +
stpc[19].phi + stpc[21].phi + stpc[23].phi + stpc[25].phi;

/*corner atoms*/
N_c = stpc[0].phi + stpc[2].phi + stpc[6].phi + stpc[8].phi +
stpc[18].phi + stpc[20].phi + stpc[24].phi + stpc[26].phi;

Laplacian_phi = 3.0f*(fc_phi + ec_phi/2.0f + co_phi/3.0f -
44.0f*stpc[13].phi/3.0f) / ( 13.0f*dx*dx );

/*G_Liquid and G_Solid are the free energy of liquid and solid respectively
calculated using Gibbs energy data from struct gibbsEnergy,
dfliq_dc is the chemical potential,
G_phi is derivative of free energy w.r.t phi,
W is the double well potential obtained from struct pfData,
gprime is derivative of the double well function g(phi) w.r.t phi,
pprime is derivative of the interpolating function p(phi) w.r.t phi,
Mobility is the phase-field mobility*/

Driving_force = G_Liquid - G_Solid - dfliq_dc*( cliq - csol );
G_phi = W * gprime - pprime*Driving_force;
phidot[dep*nx*ny + row*nx + col] = Mobility * ( epsilon^2 *
Laplacian_phi - G_phi );

/* phi_new=phi_old + phidot * dt */
}

}

Code snippet 1: ∂tφ solver depicting the usage of stencils and solver provided for isotropic Laplacian

7. Parallel implementation across multiple GPUs using MPI

The distributed memory parallel applications are written using the message passing model where each process has exclusive access to
some amount of local memory and only indirect access to the rest of the memory [41].

7.1. Domain decomposition

For simulating large domains both in 2-D and 3-D it is often necessary to decompose the domain in order to bring down the memory
overload and also the computation time as discussed earlier. A simpler option would be to distribute the load across multiple GPUs. There
are many ways of splitting the data across the nodes. One is to create a single context and use different buffers on each of the GPUs in a
compute node. This method cannot be scaled as it is restricted by the number of GPUs in a compute node. The other method is to tag each
core of a CPU to a GPU by a MPI implementation. A MPI virtual topology is created and a 1-D domain decomposition is done as shown in
Fig. 4. In order to use the GPUs on different compute nodes, the CPU cores need to be tagged manually to each GPU per compute node.
EachMPI process is given a part of the domain with eachMPI process holding two additional arrays functioning as ghost nodes. Before the
start of each iteration, the boundary layers need to be transferred to adjacent nodes. This is done by a memory transfer from the device to
host using clEnqueueReadBuffer to a 1-D array and then sending that array to the adjacent node. The adjacent MPI process receives
the array on to a buffer and then writes the buffer to the main array through clEnqueueWriteBuffer. The MPI processes handling



P. Gerald Tennyson et al. / Computer Physics Communications 186 (2015) 48–64 57

Fig. 4. An MPI+OpenCL implementation across multiple GPUs depicting 1-D domain decomposition employed for both 2-D as well as 3-D arrays.

Fig. 5. Performance benchmark of the parallel phase-field solver on multiple CPUs and a single GPU.

the boundary segments of the domain map the boundary elements depending on the type of boundary condition. For example, a no-flux
boundary condition is handled by mapping the values of (n− 1)th row elements to nth row elements.

8. Performance analysis

The performance benchmark for the simulations run onmultiple CPUs and a single GPU is shown in Fig. 5. The results for the benchmark
pertain to the growth of a primary dendritic arm without any noise. This was to avoid the difference in schemes of the noise algorithm
used for the calculations on the CPU and on the GPU. With the increase in the domain size (number of grid points), the GPUs throughput
increased. Although the trend shows that GPUs performance to be in vast difference than CPUs, this is based on the results obtained
through a naive implementation of the solver as discussed earlier. However, this difference can beminimized, by adopting variousmemory
management techniques on the CPU itself. Fig. 6 shows the convergence of the tip velocities for the simulations executed across multiple
CPUs and a single GPU confirming the equivalence of the two types of computation across the two platforms. The correctness of the results
has been verified by comparing with relevant theoretical results and presented elsewhere [32].

8.1. Performance results from each device

The performance of the solvers on each of the devices viz., AMD Phenom II X6 1090T, NVIDIA Tesla M2070 (single) and ATI Radeon
HD 5870 (single) are shown in Fig. 7(a) and (b). Profiling was done using OProfile [42], by measuring the number of floating point
instructions retired for the overall execution against different iterations on the CPU. This instructions count was used to calculate the
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Algorithm 1: Code execution on multiple GPUs
Data: Structure po(φ, c),p(φ, c),cSL(cS, cL)
Input: po
Output: pn
Initialize the MPI environment;
Create buffers for the structures on the host;
Initialize and split the domain po(φ, c) across the processors;
Initialize OpenCL environment (clGetPlatformIDs, clGetDeviceIDs);
Create context and command queue for each of the devices;
Create buffers on the devices (clCreateBuffer);
Copy buffers from host to device (clEnqueueWriteBuffer);
Read kernel file (solverKernels.cl);
Create and build the kernels for execution;
Create kernels (clCreateKernel) and set the kernel arguments (clSetKernelArg);
Start timeloop;
foreach timestep t do

Transfer elements of po(φ, c) at slice boundaries to ghost nodes between CPUs;
→memory transfer from GPU–CPU (clEnqueueReadBuffer), CPU–CPU (MPI_Send/ MPI_Recv) and CPU–GPU
(clEnqueueWriteBuffer);
foreach Element in grid do

Call cSL kernel;
end
foreach Element in grid excluding boundaries do

Call ∂tφ kernel;
end
Apply boundary conditions for ∂tφ;
Transfer elements of ∂tφ at slice boundaries to ghost nodes between CPUs;
foreach Element in grid excluding boundaries do

Call (φ, c) kernel;
end
Apply boundary conditions for p[φ, c] boundaries;
Call noise kernel;
Swap buffers po ←− pn;

end
MPI_Finalize();

Fig. 6. Convergence of dendrite tip velocities from numerical codes executed on a GPU (OpenCL - NVIDIA R⃝ Tesla M2070) and multiple CPUs (MPI - 64 processors).

FLOPS for the respective devices having known the corresponding execution times. This method though an approximation, provides
us with a better understanding of the overall performance of the kernels on the devices. The obtained measure of FLOPS on each of
the devices also helps to possibly understand the efficiency of the kernels executing on the devices, shown in Fig. 7(b) by comparing
simulations with the corresponding theoretical peak performance of each of the devices viz., CPU (55.55 GFLOPS), M2070 (1.03 TFLOPS)
and HD5870 (2.72 TFLOPS). Although, the current kernel versions provide a good scaling, it clearly shows that the devices are still under
utilized. This may be due to the naive implementation of the solver kernels, where device specific optimizations were not realized. In
contrast, this implementation has achieved a significant speed up compared to CPU and also a good fraction of the respective theoretical
peak performance on the GPU devices. The current implementation is an attempt to focus on a portable phase-field code that can be
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executed across various computing devices usingOpenCL. However, efforts are still underway to optimize the kernels to achievemaximum
utilization of the devices.

8.2. Further analysis on scalability

Strong scaling analysis of the governing equations on multiple GPUs shows that 3-D domains scale up much more efficiently than 2-D
domains as shown in Fig. 8(a) and (b). The ratio of time taken for communication including latency to the total time for computation is
generally lower for a 3-D simulation. This is because of a large number of grid points assigned to the respective sub-domain.

Weak scaling results for 2-D and 3-D shown in Fig. 9(a) and Fig. 9(b), respectively, display a similar trend. In both cases, simulations on
a 3-D domain were found to be closer to the ideal scenario.

A decrease in the overall execution time though ensured, the scalability analysis in Figs. 8 and 9, shows that it is always not possible
to achieve theoretical scaling efficiency. This is mainly due to the time spent in communicating across processors between computations.
In order to obtain the breakup in the overall execution times, it is necessary to profile the kernels to extract information on the
computation times. OpenCL kernels can be profiled by enabling the CL_QUEUE_PROFILING_ENABLE option in clCreateCommandQueue
and using event handlers viz., clWaitForEvents and clGetEventProfilingInfo to retrieve timer information. The event handler holds the
information on the initiation and completion of a kernel, which can be retrieved using clGetEventProfilingInfo. A code snippet for profiling
clEnqueueReadBuffer and clEnqueueNDRangeKernel are depicted for brevity.

/*------- Kernel profiling -------*/
cl_event kerndone;
cl_ulong kern_start;
cl_ulong kern_end;
cl_mem d_p0;
int offset, count;
float *botsend;

offset =sizeof(float)*nx;
count=sizeof(float)*nx;
botsend = (float *)malloc(sizeof(float)* nx );

command_queue = clCreateCommandQueue(context, device_id[choice],
CL_QUEUE_PROFILING_ENABLE, &ret);

clEnqueueReadBuffer(command_queue, d_p0, CL_TRUE, offset, count,
botsend, 0, NULL, &kerndone);
clWaitForEvents(1,&kerndone);
clGetEventProfilingInfo(kerndone, CL_PROFILING_COMMAND_START,
sizeof(kern_start), &kern_start, NULL);
clGetEventProfilingInfo(kerndone, CL_PROFILING_COMMAND_END,
sizeof(kern_end), &kern_end, NULL);
time_taken= kern_end - kern_start;
.
.
clEnqueueNDRangeKernel( command_queue, kernel[1], workdim,
NULL, globaldim, NULL, 0, NULL, &kerndone );
clWaitForEvents(1,&kerndone);
clGetEventProfilingInfo(kerndone, CL_PROFILING_COMMAND_START,
sizeof(kern_start), &kern_start, NULL);
clGetEventProfilingInfo(kerndone, CL_PROFILING_COMMAND_END,
sizeof(kern_end), &kern_end, NULL);

Code snippet 2: Profiling an OpenCL kernel

Timing information for the MPI communication can be obtained using MPI_Wtime(). However, it should be noted that the kernel
execution times are in nanoseconds and the MPI_Wtime() is in seconds. Figs. 10 and 11 show kernel execution time as a measure of
computation time and MPI_Wtime as a measure of time taken for communication. These figures also include the time taken for GPU–CPU
and CPU–GPU memory copy which is negligible but could be dependent on the domain size and the size of the datatypes that are passed
across. In the case of strong scaling, varying the domain size as a measure of the number of GPUs shows a slight increase in the memory
copy time. The performance breakup shows that GPU–CPU memory copy consumes less time than the CPU–CPU communication time by
the MPI API. In comparison, the analysis shows that the major part of the execution time is by the communication overhead of the MPI
routines (MPI_Send and MPI_Recv).

9. Noise

During actual growth conditions, due to thermal/solutal fluctuations in the solidifyingmelt, perturbations set along the primary arm of
the dendrite,which, if favored get amplified and grow into secondary arms/branches. To simulate this effect of the perturbations, numerical
noisewas introduced along the liquid side of the interface (0.1< φ < 0.5). Noise is introduced by generating randomnumbers between−1
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a b

Fig. 7. (a) Performance of the solver kernels onAMDPhenom II X6CPU, ATI RadeonHD5870 andNVIDIA TeslaM2070measured inGFLOPS. (b) Benchmark of the performance
of the solvers against the theoretical peak of each device.

a b

Fig. 8. Strong scaling analysis for (a) 2-D domain of length 4082× (4082/no. of GPUs) and (b) 3-D domain of length 482× 482× (482/no. of GPUs).

a b

Fig. 9. Weak scaling analysis for (a) 2-D domain with per processor domain of 1024 × (1024 × no. of GPUs) and (b) 3-D domain with per processor domain of
256× 256× (256× no. of GPUs).

and 1 then added to the interface region. Care should be taken that the noise added should not affect the growth of the tip. This is achieved
by keeping the amplitude of the noise to be very minimal. A basic approach to add noise can be found in [43,44]. However, in the case of
OpenCL, inbuilt random number generators are not available. The noise was generated by using a XOR shift random number generator
written as a kernel. They generate the next number in their sequence by repeatedly taking the exclusive OR of a number with a bit shifted
version of itself which makes them extremely fast on modern computer architectures. In order to compare the results of the simulations
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a b

Fig. 10. Strong scaling analysis breakup of the overall execution time as a function of kernel execution time, memory copy time and communication time for (a) 2-D domain
of length 4082× (4082/no. of GPUs) and (b) 3-D domain of length 482× 482× (482/no. of GPUs).

with noise on both GPUs, two constant random integers were initialized within the kernel and a seed is generated using global_id(0). The
parameters for every thread were obtained by using two random numbers which remain the same initialized in the kernel, the global ID
of the thread and a heuristically chosen 32 bit number and then reduced to a float type number between−1 and 1. Introduction of noise
along the liquid side of the interface is shown in Fig. 12.

kernel void noises( global nodeData *p, int nx, int ny ){
int randomsx = 45896325;
int randomsy = 56687692;
int col = get_global_id(0);
int row = get_global_id(1);
int dep = get_global_id(2);

float minr = -1.0f ;
float maxr = 1.0f;
float rnoise;
int n;
n=dep*nx*ny + row*nx + col;
if ( (p[n].phi > 0.1f) && (p[n].phi < 0.5f) ){
uint seed = randomsx + (362436069%n)*n;
uint t = seed ^ (seed << 11);
uint w = randomsy ^ (randomsy >> 19) ^ (t ^ (t >> 8));
rnoise = w/1000000.0- w/1000000;
rnoise = -1.0f + rnoise*2.0f;
p[n].phi = p[n].phi + (0.001*rnoise );

}
}

Code snippet 3: Noise and random number generation in OpenCL

10. Data handling and visualization

The individual chunks of output data from each processor are collected as unformatted binary files from the respective processors.
Data stitching is done by reading the individual .bin files and writing them into a single (.mat) file, using MatIO, a library for writing and
reading .mat files from C or Fortran, [45]. For 2-D, the output .mat files are visualized in Matlab R⃝. For 3-D, however, Matlab R⃝ required
a larger memory overhead for reading the data and it was found that Mayavi [46] and ParaView [47] offer a much simpler and an easier
interface for importing and visualizing 3-D data. Mayavi and ParaView both sit on top of VTK (Visualization Toolkit, [48]), an open-source
software system for 3-D computer graphics, image processing and visualization. VTK consists of C++ class libraries and several interpreted
interface layers including Tcl/Tk, Java, and Python. Both these packages are open-source, multi-platform data analysis and visualization
applications and known for quickly building visualizations. Example images of the dendrite simulations in 2-D and 3-D are shown in Fig. 13
and Fig. 14, respectively.
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a b

Fig. 11. Weak scaling analysis breakup of the overall execution time as a function of kernel execution time, memory copy time and communication time for (a) 2-D domain
with per processor domain of 1024× (1024× no. of GPUs) and (b) 3-D domain with per processor domain of 256× 256× (256× no. of GPUs).

Fig. 12. Noise introduced along the liquid side of the interface given by the phase-field contours (0.1 < φ < 0.5). S represents Solid and L, Liquid.

Fig. 13. 2-D Al–Mg alloy dendrite grown in a single GPU and visualized in Matlab R⃝ . The temperature of the domain was kept constant at 770 K and the initial composition
of the liquid was cL = 0.18. The dendrite was grown by placing a seed with solid composition cS = 0.1024 in lower left corner. Noise introduced along the liquid side of the
interface gives rise to the secondary arms.



P. Gerald Tennyson et al. / Computer Physics Communications 186 (2015) 48–64 63

Fig. 14. Al–Mg dendrite grown in the first octant (X, Y, Z > 0) on a 1022× 1022× (87× 12) with a spherical seed of solid composition cS = 0.1024 nucleated at the origin
and mirrored about the X = Y = Z = 0 planes taking 6800s for 10 000 timesteps. The temperature of the domain was kept constant at 790 K with the initial composition
of the liquid at cL = 0.15. The isosurface shown is at φ = 0.5 and is visualized using ParaView.

11. Conclusion

A stencil based portable implementation of the phase-field equations was presented. A single solver based on the stencil approach
could lead to satisfactory scale-up of performance. An OpenCL implementation of the phase-field equations was adopted to perform
simulations on different GPU platforms. The two-level parallel (MPI+OpenCL) implementation of the solver acrossmultiple GPUs allowed
the simulations to be carried on large domains making realistic microstructure simulations possible.
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