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Abstract. The results on modeling dendritic solidification from undercooled melts processed by the 
electromagnetic levitation technique are discussed. In order to model the details of formation of 
dendritic patterns we use a phase-field model of dendritic growth in a pure undercooled system with 
convection of the liquid phase. The predictions of the phase-field model are discussed referring to 
our latest high accuracy measurements of dendrite growth velocities in nickel samples. Special 
emphasis is given to the growth of dendrites at small and moderate undercoolings. At small 
undercoolings, the theoretical predictions deviate systematically from experimental data for 
solidification of nickel dendrites. It is shown that small amounts of impurities and forced 
convective flow can lead to an enhancement of the velocity of dendritic solidification at small 
undercoolings.  

Introduction 

Different techniques have been applied for measuring dendritic growth velocities during 
solidification of electromagnetically levitated melts, e.g. using a fast responding photo-double-
diode [1] or an ultra-high-speed camera system [2]. The Lipton-Kurz-Trivedi (LKT) model of 
dendrite growth [3] predicts the dendrite growth velocity V as a function of the undercooling ∆T in 
good agreement with experimental data for nickel only in the region of medium undercoolings of 
100 K < ∆T < 200 K (see Ref. [1]). Recently, we suggested a modification to the LKT model which 
takes into account the effect of forced convective flow caused by electromagnetic stirring [4]. The 
modified model predicts an increase of growth velocity when the flow is directed opposite to the 
dendrite growth. However, the effect of forced convective flow alone can still not explain the 
measured data satisfactorily [4].  An additional reason for dendrite velocities higher than predicted 
by the model might be the presence of small amounts of impurities which may drastically influence 
the kinetics of solidification [5]. Therefore we present phase-field model predictions in comparison 
with measurements of dendrite velocities. To test the influence of a small amount of impurities, the 
functions “velocity V-undercooling ∆T” are presented for Ni dendrites in comparison with a very 
dilute Ni alloy. 

Equations of the model 
We have used the phase-field model via “thin-interface” analysis [6] where the interface thickness 
W0 is assumed to be small compared to the scale of the crystal but not smaller than the microscopic 
capillary length d0. The phase-field and energy equations were taken from Ref. [7] with the 
momentum and continuity equations for the liquid taken from Ref. [8]. Furthermore, in the 
momentum equation, the Lorentz force caused by the alternating electromagnetic field, has been 
introduced for an undercooled levitated droplet. A system of governing equations is described by 
- energy conservation 
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- continuity of the liquid phase  
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- momentum transfer 
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- phase-field evolution  
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In Eqs. (1)-(4), T is the temperature, TQ is the adiabatic temperature of solidification defined by TQ 
= Q/cp, Q is the latent heat of solidification, cp is the specific heat, a is the thermal diffusivity, Φ is 
the phase-field variable (Φ=-1 is for the liquid phase and Φ=1 is for the solid phase); φ=(1+Φ)/2 is 
the fraction of the solid phase (φ=0 is for the liquid and φ=1 is for the solid), vr is the fluid flow 
velocity in the liquid, x,y,z are the Cartesian coordinates, t is the time, ρ is the density, µ is the 
dynamic viscosity, and p is the pressure. The dissipative force FD in the Navier-Stokes equation (3) 
is taken from Ref. [8]. Furthermore, in the solution of Eq. (3), the Lorentz force has been averaged 
in time: FLZ≈│B│2/(4πδ), where │B│=B0exp[(r-R0)/δ] is the modulus of the magnetic induction 
vector, Bo is the time averaged value of the magnetic induction, r is the radial distance of a droplet 
of radius R0, δ=[2/(ωσRµ0)]1/2 is considered as a skin depth for the alternating magnetic field in the 
droplet, which decreases for a short distance at which the modulus of magnetic induction |B| decays 
exponentially (where ω is the frequency of the applied current, σR is the electric conductivity, and µ0 
is the magnetic permeability). The phenomenological free energy F is defined by 
F(T,Φ)=f(Φ)+λ(T-TM)g(Φ)/TQ, where TM is the equilibrium temperature of solidification. With 
including the double-well function f(Φ)=-Φ2/2+Φ4/4 and the odd function g(Φ)=Φ-2Φ3/3+Φ4/5 
itself, the free energy F is constructed in such a way that a tilt λ of an energetic well controls the 
coupling for T and Φ.  

The time )(nrτ  of the phase-field kinetics and the thickness )(nW r  of the anisotropic 
interface are given by  
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where τ0 is the time scale for the phase-field kinetics, W0 is the parameter of the interface thickness 
with W0 =λd0/a1, and a1 =(5/8)21/2. The second term in brackets of Eq. (5) for )(nrτ  defines a 
correction a2=0.6267 for the “thin-interface” asymptotic [12]. The anisotropy of interfacial energy 
is given by  
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where )(nrγ  is the surface energy dependent on the normal vector nr  to the interface, γ0 is the mean 
value of the interfacial energy along the interface, and εc is the anisotropy parameter. The 
anisotropy of kinetics of atomic attachment to the interface is given by 
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where )(nrβ  is the kinetic coefficient dependent on the normal vector nr  to the interface, β0 is the 
averaged kinetic coefficient along the interface which is defined by β0 =(1/µ100-1/µ110)/(2TQ), and 
εk=(µ100-µ110)/(1/µ100+1/µ110) is the kinetic anisotropy parameter in which µ100 and µ110 are the 
kinetic coefficients in the <100>- and <110>-direction, respectively. In Eqs. (5)-(7), the normal 
vector has the components (nx,ny,nz) defined by the gradients of the phase-field as follows 
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Results and discussion  
Equations (1)-(7) have been solved numerically in the three-dimensional space by a finite-
difference technique on a uniform computational grid. We used a multi-grid algorithm for resolving 
the equations of the phase-field (4), heat transfer (1) and momentum (3) which have different 
spatial lengths and time scales of their dynamics. Parameters of modeling and material parameters 
for pure nickel are given in Refs. [5,9]. 
 

Figure 1. (a) Dendritic pattern growing into a stagnant pure nickel melt at the undercooling 
∆T=0.30TQ (K). The pattern has been simulated using a grid of size 4503 nodes. The details of 
modeling are given in Ref. [9]. (b) Growth of nickel dendrite under convective flow at the 
undercooling ∆T=0.30TQ (K) and the fluid flow velocity U0=0.7 (m/s) imposed at the top surface of 
the computational domain. The growth velocity of the up-stream branch is pronounced in 
comparison with the down-stream branch due to forced convection. Dashed lines around the 
dendrite indicate the flow velocity vectors in the vertical cross-section. The pattern has been 
simulated using a grid of size 230×230×330 nodes. 
 
Dendritic patterns. We obtained the morphological spectrum of interfacial crystal structures for a 
wide range of undercoolings. In our modeling, the spectrum of the obtained crystal structures 
exhibits a change from grained crystals at very small undercoolings (∆T<0.15TQ) to dendritic 
patterns at intermediate undercoolings (0.1TQ<∆T<1.0TQ) to grained crystals again at high 
undercoolings (∆T>1.0TQ). Within the range of intermediate undercoolings, the shape of dendrites 
is dictated by the preferable crystallographic direction (which is the <100> direction for the case of 
Ni). Figure 1(a) shows the dendritic crystal whose growth has been dictated by the preferable 
crystallografic directions (these are the  <100> directions for nickel for all ranges of undercooling). 
Solidification under the influence of forced convective flow in a droplet produces dendritic growth 
that is pronounced in the direction opposite to that of the far field flow velocity U0 (see Ref. [4]). 
The present results of modeling also confirm this outcome: with imposing the fluid flow, the growth 
becomes pronounced in the direction opposite to the flow as shown in Fig. 1(b). For these 
structures, i.e. growing in a stagnant melt and also with the melt flow (Fig. 1) we compared the 
results for dendrite growth velocity V in pure Ni versus undercooling ∆T quantitatively. 
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The results of phase-field modeling exhibit an increase of the velocity of the up-stream dendrite 
branch, Fig. 1(b). When the thermal boundary layer shrinks ahead of the up-stream branch due to 
the flow, the heat of solidification is removed faster, and the growth velocity enhances. The 
enhanced dendrite velocity due to the melt flow decreases the discrepancy between theory and 
experimental data at small undercoolings. Hence we have compared the predictions of the present 
phase-field modeling with the new experimental data [5] for growth kinetics of nickel dendrites.  
Comparison with experimental data. In comparison with the experimental measurements 
summarized in Ref. [1], we improved the accuracy of the technique and performed new 
measurements of dendritic growth velocities in levitated nickel samples [5]. The measurements 
were performed for the dendritic growth velocity V as a function of undercooling ∆T=TL-T∞, 
measured experimentally for the melted drop (TL is the liquidus temperature, and T∞ is the actual 
temperature of the drop). Solidification of the melt was triggered in the range of 30 K<∆T<260 K.  

Comparison of these new data with the solution of Eqs.(1)–(7) confirms that convection alone 
cannot describe the experimental results satisfactorily. An additional reason for the remaining 
discrepancy might be due to the presence of small amounts of impurities [5]. Therefore, we have 
used the sharp-interface model [10] to evaluate the influence of the solute diffusion on dendrite 
growth kinetics. As it can be seen in Fig. 2, the dendrite tip radii for pure Ni and, respectively, for 
Ni with impurities differ significantly (the details of computation will be published elsewhere [11]). 
E.g., for Ni with 0.01 at.% of impurity, the transition from solute diffusion-limited growth to 
thermally controlled growth occurs in the range 30 K<∆T<130 K, Fig. 2. In this range, “thin” alloy 
dendrites grow rapidly in comparison with the “thick” thermal dendrite. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Dendrite  tip radius as a 
function of undercooling. The solid 
line is for pure Ni, the dashed line is 
for Ni with 0.01 at. % of impurity,  
and the dashed-dotted line is for Ni  
with 0.05 at.% of impurity. 

 Figure 3. Comparison of data from 
experiment (open squares), phase- field 
modeling for pure Ni without with flow 
(stars), and final data (black squares) 
with the effect from thermal convection 
and solute diffusion. 

 
Consequently, we have found that small amounts of impurities in nickel can lead to an enhancement 
of the growth velocity but with a temperature characteristic different from that of the effect of fluid 
flow. This allows to discriminate between both contributions and model them separately by means 
of the phase-field modeling of dendritic solidification with convective flow and the sharp-interface 
model of dendritic growth of a binary system. Therefore, using the results of the present phase-field 
modeling for pure nickel, Eqs. (1)-(7), and the sharp-interface model [10] for Ni + 0.01 at.% of 
impurity, we determined the final growth velocity as follows:  
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where VNi(∆T) is the velocity obtained from the phase-field modeling without convection of the 
liquid phase, ∆VConv(∆T) is the increase in velocity due to convection estimated from the phase-field 
modeling with convection, and ∆VDif(∆T) is the increase in velocity due to presence of a small 
amount of impurity obtained from the sharp interface model. The increases ∆VConv(∆T) and 
∆VDif(∆T) were computed relatively to the velocity VNi(∆T) given by the phase-field modeling of 
dendrite solidification without convective flow. Figure 3 shows the final comparison of the 
modeling data and experimental results for the growth velocity of nickel dendrites. It can be seen 
that we obtain good agreement with the experimental data provided both convection and solute 
diffusion are taken into consideration.   

Conclusions 
The results of the phase-field model lead to the conclusion that forced convective flow enhances the 
growth velocity in the range of small undercoolings where the dendrite growth velocity is 
comparable to the velocity of the flow. Using the sharp interface model [10], it is shown that even 
small amounts of impurities on the level of 0.01 at. % lead to an enhancement of the growth 
velocity in the range of small and intermediate undercoolings. The solute effect, however, shows a 
different temperature characteristics than the transport effect by fluid flow, which makes it possible 
to discriminate between both these effects by investigating the dendritic growth velocity V as a 
function of undercooling ∆T.  
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