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PHASE-FIELD MODELING OF DENDRITIC SOLIDIFICATION IN UNDERCOOLED
DROPLETS

P.K. GALENKO, D.M. HERLACH, G. PHANIKUMAR, O. FUNKE
Institute of Space Simulation, DLR, 51170, Cologne, Germany

The predictions of a phase-field model for dendritic growth with forced convective
flow of the liquid phase are tested in comparison with experimental data on
solidification of nickel droplets in electromagnetic levitation facility. It is shown that
small amounts of impurities and forced convective flow can lead to an enhancement
of the velocity of dendritic solidification at small undercoolings.

1. INTRODUCTION

Different techniques have been applied for measurement of dendritic growth
velocities during solidification of electromagnetically levitated melts, e.g. the usage of
a fast responding photo—double—diode‘ or an ultra-high-speed camera system?. The
LKT model of dendrite growth® predicts the dendrite growth velocity V as a function
of the undercooling AT in good agreement with experimental data for nickel
solidification only in the region of medium undercoolings 100 K < AT < 260 K (see
Ref.'). Recently, we suggested a modification to the LKT model which takes into
account the effect of forced convective flow caused by electromagnetic stirring®. The
modified model predicts the increase of velocity when the flow is directed opposite to
the dendrite growth. However, the effect of forced convective flow alone can still not
explain the measured data satisfactorily*. The additional reason for dendrite
velocities higher than predicted by the model might be due to the presence of small
amounts of impurities which may drastically influence the kinetics of solidification®.
Therefore we present the phase-field model predictions in comparison with the
measurements of dendrite velocity. To test the influence of a small amount of
impurity, the functions V-AT are presented for the Ni dendrites in comparison with a

very dilute alloy of Ni.
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2. GOVERNING EQUATIONS

We have used the phase-field model via “thin-interface” analysis® where the
interface thickness W, is assumed to be small compared to the scale of the crystal
but not smaller than the microscopic capillary length do. The phase-field and energy
equations were taken from Ref.” with the momentum and continuity equations for the
liquid taken from Ref.®. Furthermore, in the momentum equation, the Lorentz force
caused by the alternating electromagnetic field, has been introduced for an
undercooled levitated droplet. A system of governing equations is described by

- energy conservation
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- continuity of the liquid phase
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- momentum transfer
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In Egs. (1)-(4), T is the temperature, Tq is the adiabatic temperature of solidification
defined by Tq = Q/;, Q is the latent heat of solidification, ¢, is the specific heat, a is
the thermal diffusivity, @ is the phase-field variable (®=-1 is the liquid phase and
®=1 is for the solid phase); @=(1+®)/2 is the fraction of the solid phase (¢=0 is for
the liquid and @=1 is for the solid), ¥ is the fluid flow velocity in the liquid, x,y,z are
the Cartesian coordinates, t is the time, p is the density, p is the dynamic viscosity,
and p is the pressure. The dissipative force Fp in the Navier-Stokes equation (3) is
taken from Ref.®. Furthermore, in solution of Eg. (3), the Lorentz force has been
averaged in time: Fiz=| B| %(415), where | B| =Boexp|(r-Ro)/3] is the modulus of the
magnetic induction vector, B, is the time averaged value of the magnetic induction, r
is the radial distance of a droplet of radius Ry, 6=[2/(w0ro)]"? is considered as a
skin depth for the altemating magnetic field in the droplet, which decreases for a
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short distance at which the modulus of magnetic induction IBlI decays
exponentially (where w is a frequency of the applied current, or is the electric
conductivity, and pp is the magnetic permeability). The phenomenolagical free
energy F is defined by F(T,®)=f(®)+A(T-Tm)g(®)/Ta, where Ty is the equilibrium
temperature of solidification. With including the double-well function f(®)=-®%2+®%/4
and the odd function g(®)=®-20%3+d%5 itself, the free energy F is constructed in
such a way that a tilt A of an energetic well controls the coupling for T and @.

The time (i) of the phase-field kinetics and the thickness W (i) of the

anisotropic interface are given by
Ad, a (1)
af, a,(n)
where 1, is the time-scale for the phase-field kinetics, W, is the parameter of the
interface thickness with W, =Ad/a;, and a, =(5/8)2"2. The second term in brackets of
Eq. (5) for 7(ii) defines a correction a,=0.6267 for the “thin-interface” asymptotic'.

7(n) = 7., (n)ak(”)|:l ta =y } W (n)=Wa.(n), ®)

The anisotropy of interfacial energy is given by
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where y(it) is the surface energy dependent on the normal vector 7 to the interface,

7o is the mean value of the interfacial energy along the interface, and & is the
anisotropy parameter. The anisotropy of kinetics of atomic attachment to the

interface is given by
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0
where p(n) is the kinetic coefficient dependent on the normal vector n to the
interface, Bo is the averaged kinetic coefficient along the interface which is defined
by Bo =(1/u100-1/11110)/(2Tq), and ex=(U100-L110)/(1/100+1/1110) IS the kinetic anisotropy
parameter in which prsg0and p110 are the kinetic coefficients in the <100>- and <110>-
direction, respectively. In Egs. (5)-(7), the normal vector has the components
(nx,ny,nz) defined by the gradients of the phase-field as follows

nt+nd 4t = @@ /ax) + (0@ /1 0p)* + (00 182)* o]



3. RESULTS AND DISCUSSION

Equations (1)-(7) have been solved numerically by a finite-difference technique
on a uniform computational grid. We used a multi-grid algorithm for resolving the
equations of the phase-field (4), heat transfer (1) and momentum (3) which have the
different spatial lengths and time scales of their dynamics. Parameters of modeling
and material parameters for pure nickel are given in Ref.®

3.1. Dendritic patterns

We obtained the morphological spectrum of interfacial crystal structures for a
wide range of undercoolings. In our modeling, the spectrum of the crystal structures
obtained exhibits a change from grained crystals at very small undercoolings
(AT<0.15Tq) to dendritic patterns at intermediate undercoolings (0.1Tq<AT<1.0Tq)
to grained crystals again at high undercoolings (AT>1.0Tg). Within the range of
intermediate undercoolings, the shape of dendrites is dictated by the preferable
crystallographic direction (which is <1 00>-direption for the case of Ni). Furthermore,
stochastic noise plays a crucial role in the formation of branched crystal patterns of
dendritic type. Figure 1(a) shows the dendritic crystal with secondary branches with
the application of the thermal noise. Solidification under the influence of forced
convective flow in a droplet produces dendritic growth pronounced in the direction
opposite to that of the far field flow velocity U, (see Ref.*). The present results of
modeling also confirm this outcome: with the imposing of the fluid flow, the growth
becomes pronounced in the direction opposite to the flow as shown in Fig. 1(b). For
these structures, i.e. with the thermal noise in a stagnant melt and also with the melt
flow (Fig. 1) we compared the results for dendrite growth velocity Vin pure Ni versus
undercooling AT quantitatively.

The results of phase-field modeling exhibit an increase of the velocity of the up-
stream dendritic branch, Fig.2. As soon as the thermal boundary layer shrinks ahead
of the up-stream branch due to the flow, the heat of solidification is removed better,
and the growth velocity enhances. The enhanced dendrite velocity due to the melt
flow decreases the discrepancy between theory and experimental data at small
undercoolings. Hence we have compared the predictions of the present phase-field
modeling with the new experimental data® for growth kinetics of nickel dendrites.
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Figure 1. (a) Dendritic growth pattern with side-branches due to application of finite
level of thermal stochastic noise according to Reference® with application to pure
nickel at the undercooling AT=0.55T (K). Pattern has been simulated on a grid of
size 650° nodes. (b) Growth of nickel dendrite under convective flow at AT=0.30Tq
(K) and Ug=0.7 (m/s). Growth velocity of the up-stream branch is pronounced in
comparison with the down-stream branch due to forced convection. Dashed lines
around the dendrite indicate the flow velocity vectors in the vertical cross-section.
Pattern has been simulated on a grid of size 230x230x330 nodes.

3.2. Comparison with experimental data

We improved the accuracy of the CPS technique and performed new
measurements of dendritic velocities in levitated nickel samples®. The
measurements were performed for dendritic growth velocity V as a function of
undercooling AT=T;-T., measured experimentally for the melted drop. Here, T, is the
liquidus temperature, and T. is the actual temperature of the drop. Solidification of
the melt was triggered in the range of 30 K<AT<260 K.

Comparison of these new data with the solution of Eqgs.(1)-(7) confirms that
convection alone cannot describe the experimental results satisfactorily. The
additional reason for the discrepancy that still exists might be due to the presence of
small amounts of impurity®. Therefore, we have used the sharp-interface model™ to

evaluate the influence of the solute diffusion on dendrite growth kinetics. As it can be
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seen in Fig. 2, the dendrite tip radii for pure Ni and, respectively, for Ni with
impurities  differ significantly (the details of computation will be published
elsewhere'). E.g., for Ni with 0.01 at.% of impurity, the transition from solute
diffusion-limited growth to thermally controlled growth occurs in the range 30
K<AT<130 K, Fig. 2. In this range, “thin” alloy dendrites grow rapidly in comparison
with the “thick” thermal dendrite.
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Figure 2. Dendrite tip radius as a
function of undercooling. Solid line is for
pure Ni, dashed line is for Ni 0.01 at. %
of impurity, and dashed-dotted line is
for Ni with 0.05 at.% of impurity.

Figure 3. Comparison of data from
experiment (open squares), phase- field
modeling for pure Ni without with flow
(stars), and final data (black squares)
with the effect from thermal convection

and solute diffusion.

Consequently, we have found that small amounts of impurities in nickel can lead
to an enhancement of the growth velocity but with a temperature characteristic being
different from that of the effect by fluid flow. This allows to discriminate between both
contributions and model them separately by means of the phase-field modeling of
dendrite solidification with convective flow and the sharp-interface model of dendritic
growth of a binary system. Therefore, using the results of the present phase-field
modeling for pure nickel, Egs. (1)-(7), and the sharp-interface model'® for Ni + 0.01
at.% of impurity, we determined the final growth velocity as follows:



V(AT) = VM{AT) + AVeonAAT) + AVDAAT),
where Vn{AT) is the velocity obtained from the phase-field modeling without
convection of the liquid phase, AVcondAT) is the increase in velocity due to
convection estimated from the phase-field modeling with convection, and AVpA{AT) is
the increase in velocity due to presence of a small amount of impurity obtained from
the sharp interface model. The increasings AVeon{AT) and AVp{ AT) were computed
relatively to the velocity Va{AT) given by the phase-field modeling of dendrite
solidification without convective flow. Figure 3 shows the final comparison of the
modeling data and experimental results for growth velocity of nickel dendrites. It can
be seen that we obtain a good agreement with experimental data provided both

convection and solute diffusion are taken into consideration.

4. CONCLUSIONS

The results of phase-field model lead to the conclusion that forced convective
flow enhances the growth velocity in the range of small undercoolings where the
dendrite growth velocity is comparable to the velocity of the flow. Using the sharp
interface model'?, it is shown that even small amounts of impurity on the level of 0.01
at. % lead to an enhancement of the growth velocity in the range of small and
intermediate undercoolings. The solute effect, however, shows a different
temperature characteristics than the transport effect by fluid flow, which makes it
possible to discriminate between both these effects by investigating the growth

velocities as a function of undercooling.

ACKNOWLEDGEMENTS

The authors thank Prof. Wilfried Kurz and Prof. Christoph Beckermann for
stimulating discussions and useful exchanges. Financial support of this work by
Deutsche Forschungsgemeinschaft under the project No. HE 1601/13 is gratefully
acknowledged.



1)
2)

3)
4)

D)

6)
7)

8)

9)

REFERENCES

K. ECKLER, D.M. HERLACH, Mater. Sci. Eng. A 178 (1994) 159.

D.M. MATSON, The measurement of dendrite tip propagation velocity during
growth into undercooled melts, in: Solidification 1998, eds. S.P. Marsh, J.A.
Dantzig, R. Trivedi, W. Hofmeister, M.G. Chu, E.J. Lavrenia and J.-H. Chun),
TMS, Warrendale PA, 1998.

J. LIPTON, W. KURZ, R. TRIVEDI, Acta Metall. 35 (1987) 957.

P.K. GALENKO, O. FUNKE, J. WANG, D.M. HERLACH, Mater. Sci. Eng. A
(2004) in press.

O. FUNKE, G. PHANIKUMAR, P.K. GALENKO, M. KOLBE, D.M. HERLACH,
Phys. Rev. E (2004) submitted.

A. KARMA, W.-J. RAPPEL, Phys. Rev. E 57 (1998) 4323.

J. BRAGARD, A. KARMA, Y. H. LEE, M. PLAPP, Interface Science 10 (2002)
121.

C. BECKERMANN, H.-J. DIEPERS, I. STEINBACH, A. KARMA, X. TONG, J.
Comp. Physics 154 (1999) 468.

A. KARMA, W.-J. RAPPEL, Phys. Rev. E 60 (1999) 3614.

10) P.K. GALENKO, D.A. DANILOV, Phys. Lett. A 235 (1997) 271.
11) P.K. GALENKO, D.M. HERLACH, G. PHANIKUMAR, O. FUNKE, Phase-field

modeling of solidification of undercooled melt: a test and comparison for the
current models with the new experimental data. Manuscript in preparation, 2004.



ADVANCES IN SCIENCE AND TECHNOLOGY, 43

COMPUTATIONAL
MODELING AND
SIMULATION OF
MATERIALS Il

Proceedings of the 3" International Conference on
“Computational Modeling and Simulation of Materials”
Acireale, Sicily, Italy, May 30-June 4, 2004, Co-chaired by
Jean-Louis Barrat, Tomas Diaz de la Rubia and Masao Doi

PART B

Edited by
P. VINCENZINI

World Academy of Ceramics

A. LAMI

National Research Council, Italy

TECHNA CROUP

Faenza 2004



