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We present experimental results, analytical
calculations and phase-field simulations for
undercooled Ni–Fe–Si alloy system. Undercooling
experiments are performed using flux encapsulation
along with in situ measurement of recalescence
speed using a high-speed camera followed by
microstructural characterization. Dendrite growth
calculations are performed using a modified
Boettinger, Coriell and Trivedi theory to incorporate
constitutional undercooling due to multiple
segregating elements and a modified kinetic
undercooling term. Phase-field simulations are
performed using a multi-component phase-field
model to generate dendrites in this alloy. High
growth velocities are observed and the analytical
calculations are in good agreement with experiments.
The microstructure evolution from the phase-field
simulations indicates that there is a difference in
solute segregation during growth of dendrites.

This article is part of the theme issue
‘Heterogeneous materials: metastable and
non-ergodic internal structures’.

1. Introduction
Solidification of metallic systems has fundamental
importance in manufacturing processes such as casting,
welding and advanced techniques such as additive
manufacturing [1]. Microstructure evolution during
solidification in these processes decides the performance
of a product. Integrated Computational Materials
Engineering (ICME)-based platforms enable a faster and
reliable product development cycle with the help of
simulation tools along with experimental inputs [2].
Analysis of rapid solidification enables us to choose the
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appropriate processing conditions for phase selection in laser or electron beam-based additive
manufacturing processes.

The industrially important alloys such as steels and superalloys are multi-component
systems. Hence, it is essential to incorporate the solute interactions among all the components
to understand the solidification behaviour of multi-component alloys. The measurement of
undercooling using experiments can aid in the study of rapid solidification of multi-component
systems [3]. The study of recalescence can be carried out by monitoring the thermal and spatial
profiles during solidification in the undercooled melt [4].

The phase-field method is the most widely used technique for predicting microstructure
evolution during phase transformations [5,6]. It is a diffuse interface approach, where an order
parameter (φ) is used to describe the individual phases so that the explicit interface tracking is
avoided. Phase-field models consider capillarity effects and can simulate complex microstructural
features such as dendrites. Coupling of the thermodynamic database to the phase-field model
during the simulations allows us to simulate the phase transformations in realistic multi-
component alloys [7]. For quantitative results, phase-field models require smaller interface width,
which demands finer grid spacing and time steps. Hence, these simulations require an enormous
amount of computational resources and large memory for simulating realistic length scales [8,9].

Unlike the phase-field simulations, the calculations based on dendrite tip growth models are
not computationally intensive. These models predict the dendrite tip velocity and radius for
steady state dendrite growing at an undercooling below the equilibrium freezing temperature
of the melt. The models are developed for operating state of the dendrite tip for pure
materials, binary and multi-component alloys. The free dendrite growth theory for pure materials
proposed by Lipton, Glicksmann & Kurz (LGK) [10] was limited to equilibrium interface at low
undercoolings. Lipton, Kurz & Trivedi (LKT) [11] extended the LGK model for high growth
rates. Interface kinetic effects to the LKT theory were incorporated by Boettinger, Coriell and
Trivedi (BCT) [12]. Later, the effect of local non-equilibrium during rapid dendritic growth was
introduced for binary alloys by Galenko & Danilov [13]. Further, models were also developed
for ternary and multi-component systems for the solid–liquid interface growth rate [14,15]. In the
above-mentioned models, the stability of the dendrite tip was given by marginal stability criteria
[16] and recently the exact solution for the dendrite tip was obtained by microscopic solvability
theory [17,18].

Bobadilla et al. [19] and Löser & Herlach [20] applied these theories for ternary alloys with
an approximation of a linear phase diagram. The dendrite tip growth calculations for Fe–Cr–Ni
ternary alloy were carried out with a linear phase diagram approach [19]. Experimental growth
velocity of the α phase in the Fe-based quaternary alloy was understood only in terms of the
binary alloy contributions [21]. A comprehensive study of dendrite growth using experiments,
analytical calculations and phase-field simulations was reported for Ni–Al–Zr dilute ternary alloy
[22].

There are very limited reports on the comprehensive study of dendrite tip growth including
undercooling studies with experiments, analytical calculations and phase-field simulations for
concentrated multi-component alloys. Hence, in this study, we have carried out undercooling
experiments on Ni–Fe–Si alloy to study the growth rate kinetics of the primary solidifying
phase. These experimental results were correlated with the modified BCT model by taking into
account the solute interactions. These modifications were mainly focused on the constitutional
undercooling and kinetic undercooling contributions. Phase-field simulations were carried out
for the undercooled melt to analyse the microstructure evolution.

2. Phase-field method
The phase-field model uses an order parameter, φ(r, t) for describing the phases. In this study,
solid and liquid are represented by φ = 1 and φ = 0, respectively. In order to eliminate the chemical
potential jump at the interface, we have used the anti-trapping multi-component phase-field
model developed by Kim [23]. The brief details about the model used in this study are as follows.
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Free energy functional, F of a system with (n + 1) components is given by

F =
∫

V

[
ε2
φ

2
|∇φ|2 + Wp(φ) + hp(φ)f S + [1 − hp(φ)]f L

]
dV, (2.1)

where εφ is the gradient energy coefficient, p(φ) is the double-well potential function, W is the
height of the double well potential, hp(φ) is the interpolation function for phase-field, f S is the free
energy density of the solid and f L is the free energy density of the liquid. Phase transformations
are studied by minimizing the above free energy functional. Phase-field evolution during
solidification process is given by

1
Mφ

∂φ

∂t
= ε2

φ∇2φ − W
∂p(φ)
∂φ

− ∂hp(φ)
∂φ

[
f S − f L −

n∑
i=1

(cS
i − cL

i )μ̃i

]
, (2.2)

where Mφ is the phase-field mobility and μ̃i is the chemical potential of ith component. The
evolution of the concentration of ith component, ci is given by

∂ci

∂t
= ∇ · [1 − hd(φ)]

n∑
j=1

DL
ij∇cL

j + ∇ · jat, (2.3)

where hd(φ) is the interpolation function for diffusion and D is the diffusivity. The anti-trapping
term, jat is given as

jat = εφ√
2W

(cL
i − cS

i )
∂φ

∂t
∇φ

|∇φ| . (2.4)

Composition at the interface is given as the mixture of bulk compositions.

ci = hr(φ)cS
i + (1 − hr(φ))cL

i , (2.5)

where hr(φ) is the interpolation function for composition. The compositions cL
i and cS

i are
restricted by the equal chemical potential condition at the interface

∂f S

∂cS
i

= ∂f L

∂cL
i

≡ μ̃i. (2.6)

The composition of solid and liquid, cL
i and cS

i , is solved at every time step and grid point from
equations (2.5) and (2.6) using the multi-dimensional Newton–Raphson method.

At a thin interface limit, the phase-field mobility and real interface mobility are given by the
following relation:

1
m

= 1
Mφ

√
W

3
√

2ε
− a2

ε√
2W

ζ , (2.7)

where a2 is constant and given by
∫1

0(h(φ)/φ) dφ [23], with h(φ) = φ3(6φ2 − 15φ + 10), a2 is equal
to 47

60 . To achieve an effective local equilibrium at the interface with infinite interface mobility, the
phase-field mobility is given by

Mφ = W
3ε2a2ζ

. (2.8)

This expression for the mobility is used in the phase-field evolution equation.

ζ = (�c][AL][DL]−1[�c), (2.9)

where the matrix elements are represented as (�c] = ce
iL − ce

iS, [�c) = (�c]T, [AL] = ∂2f L/∂ciL∂cjL
and [DL] = DL

ij.
Free energy of the liquid and solid in equation (2.1) is the Gibbs energy for phase-field

simulations in real alloy systems. In order to simulate a realistic microstructure, one of the
essential inputs to the phase-field models is thermodynamic information in the form of Gibbs
energy of respective phases. These descriptions are obtained using the Calphad (CALculation
of PHAse Diagram) method [24,25]. The Gibbs energy functions are available in the form of
polynomials as a function of temperature (T), pressure (p) and composition.
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The molar Gibbs energy, Gm, of a system has ideal, reference state and excess contributions at
standard pressure which are given by

Gm =
n+1∑
i=1

ciG
◦
i + RT

n+1∑
i=1

ci ln ci + Gex
m , (2.10)

where ci is the composition of a component i, G◦
i is the Gibbs energy of the pure component i

and Gex
m is the excess Gibbs energy. Excess Gibbs energy contribution is from binary, ternary and

higher-order extrapolation terms is given by

Gex
m = Gex,bin

m + Gex,tern
m + Gex,hig

m . (2.11)

For a ternary system, the contribution of constituent binary alloys is given by

Gex,bin
m =

n∑
i=1

n+1∑
j=i+1

cicjLij, (2.12)

Lij =
l∑

ν=0

(ci − cj)
ν · νLij (2.13)

and νLij = νaij + νbijT. (2.14)

The excess Gibbs energy for a ternary system is given by

Gex,tern
m =

n−1∑
i=1

n∑
j=i+1

n+1∑
k=j+1

cicjckLijk (2.15)

and

Lijk = υi · iLijk + υj · jLijk + υk · kLijk, (2.16)

where υi = ci + (1 − ci − cj − ck)/3, υj = cj + (1 − ci − cj − ck)/3, υk = ck + (1 − ci − cj − ck)/3 and
νLijk = νaijk + νbijkT. νLij and νLijk are the Redlich–Kister parameters that are optimized using the
Calphad approach.

3. Dendrite growth model
The total melt or bath undercooling (�T) of an alloy is the difference between the equilibrium
liquidus temperature (TL) and the temperature at dendrite tip. According to Boettinger et al. [12],
the various contributions to �T are given as

�T = �Tt + �Tr + �Tc + �Tk, (3.1)

where �Tt is the thermal undercooling, �Tr is the Gibbs–Thomson undercooling due to the
curvature of the dendrite tip, �Tc is the constitutional undercooling and �Tk kinetic undercooling
describes the deviations from local equilibrium. These contributions can be calculated using the
following relations. The thermal undercooling is given by [26]

�Tt = �Hf

CL
p

Iv(Pet) = TQ Iv(Pet), (3.2)

where Cl
p is the specific heat of the undercooled liquid, �Hf is the enthalpy of fusion, TQ is

hypercooling, Iv(Pet) is the Ivantsov function and Pet is the thermal Peclet number which is given
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by

Pet = VR
2a

, (3.3)

where V is the dendrite growth velocity, R is the dendrite tip radius and a is the thermal
diffusivity. The undercooling due to curvature is given as [11]

�Tr = 2
Γ

R
, (3.4)

where Γ is the Gibbs–Thomson coefficient, which is given as

Γ = σ0

�Sf
, (3.5)

σ0 is the solid–liquid interfacial energy and �Sf is the entropy of fusion.
Constitutional undercooling for multi-component alloys was defined by [27] and is given as

�Tc = TL(c0
1, c0

2, . . . , c0
n) − TL(c∗L

1 , c∗L
2 , . . . , c∗L

n ), (3.6)

where c0
i is the composition of ith solute in the liquid. The above description for constitutional

undercooling takes care of nonlinear liquidus surface for multi-component systems provided the
composition-dependent liquidus temperature is calculated from the thermodynamic databases.
c∗L

i is the composition of ith solute in the liquid at the dendrite tip which is given by [28]

c∗
i = c0

i
1 − (1 − ki)Iv(Pei)

, (3.7)

where Pei is the chemical Peclet number which is given as

Pei = VR
2Di

, (3.8)

where Di is the chemical diffusion coefficient. The velocity-dependent partition coefficient is given
by [29]

ki(V) = kE,i + V/VDIi

1 + V/VDIi

, (3.9)

where kE,i is the equilibrium partition coefficient of component i and VDIi is the interface diffusion
velocity for component i. The kinetic undercooling is given by

�Tk = V
μ

, (3.10)

where μ is the interfacial kinetic coefficient which is given as [30]

μ = RgT2
L

�Hf V0
, (3.11)

V0 is the velocity of sound and Rg is the universal gas constant.
Equation (3.1) has two variables dendrite growth velocity V and dendrite tip radius R. In order

to solve for the V and R the additional required equation is obtained from the stability analysis
[16,31,32]. The second equation required to solve V and R used in this study is given by [19,20]

R = Γ/σ ∗

PetTQ(1 − n) − ∑2
i=1 2Peimic∗

i (1 − ki)(1 + gi)
, (3.12)

n = 1√
1 + 1

σ ∗Pe2
t

(3.13)
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and gi = 2ki

1 − 2ki −
√

1 + 1/(σ ∗Pe2
i )

, (3.14)

where σ ∗ = 1/4π2 is the stability constant. Equations (3.12) and (3.1) together allow the calculation
of dendrite tip velocity and radius as a function of undercooling.

4. Experimental details
Ni–Fe–Si alloys with 30 at.% Fe and 10 at.% Si were prepared using vacuum arc melting with a
non-consumable tungsten electrode. The pure elements (greater than 99.9%) were weighed and
melted in Ar atmosphere. The samples were melted for six times and the cast buttons were flipped
after each melting to get a homogeneous distribution of alloying elements. The as-cast samples
were in the form of buttons that weighed around 20 gm. These samples were cut to required
quantity using electrical discharge machining (EDM). The cut samples were polished to remove
the oxide layer and used further for undercooling experiments.

The undercooling experiments were carried out using melt fluxing technique with B2O3 as
the flux. The time–temperature profiles were captured using a two colour infrared pyrometer
with an accuracy of ±5◦C. The high-speed imaging of the solidification process was captured
using a Photron R© FASTCAM high-speed camera at 105 frames/second. The captured data
were analysed by using Photron R© FASTCAM Viewer software. Structural characterization for
the as-cast and undercooled samples was done using X-ray diffraction (XRD) (PANalytical R©
X’pert Pro) with Cu-Kα (λ = 0.154 nm) radiation with a step size of 0.02◦. The diffractograms
were analysed using X’pert High Score software. The microstructural characterization for
these samples was performed using optical microscopy (Leica Microsystems R©, Germany) after
polishing and etching with Marbles reagent (10 ml HCl + 10 ml H2O + 2 gm CuSO4). A scanning
electron microscope (SEM) (FEI R© Quanta 400, USA) with an operating voltage of 20 kV, fitted
with an energy-dispersive spectroscopy (EDS) attachment was used for further microstructural
characterization as well as elemental composition analysis.

5. Computational details

(a) Phase-field method
The phase-field model was implemented using C-programming language and Graphical
Processing Units (GPU) were used for accelerating the simulations using OpenCL libraries
(D Mohan, Phanikumar G 2018, unpublished work). The accuracy of the phase-field results
depends on the choice of interface width η and grid size �x. The value of η should be less than
the dendrite tip radius. In the present calculations, the ratio η/R is always greater than 1/3 [33]
and hence, η/�x = 10 is chosen. A 2048 × 2048 domain size was used in these calculations. Non-
dimensionalized governing equations were solved using Euler explicit scheme. The time step
�t used in these simulations was (�x)2/(5DSiSi), which is less than (�x)2/(2DSiSi) the stability
condition for explicit scheme [34].

In this work, we have used Thermo-Calc software [35] to calculate the Gibbs energies using the
Calphad method. The commercial database for superalloys in Thermo-Calc (TCNI8) is encrypted
and, hence, it is not possible to get the parameters in the Gibbs energy functions to be given as
input in the phase-field simulations. Hence, the application programming interface of Thermo-
Calc, known as the TQ interface was used to get the Gibbs energy values for different phases
as a function of composition at various temperatures. These values were fitted to a polynomial
as shown in equation (5.1). This is performed to improve the computational efficiency of the
program.

The material parameters used in the phase-field simulations are listed in table 1. To obtain a
larger domain, the dendrite tip growth direction is rotated by 45◦ with respect to the coordinate
axis for better visualization.
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Table 1. Material parameters used in the phase-field simulations.

parameter units value source

σ0 (J m−2) 0.25 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLFeFe at 1636 K (m2 s−1) 2.51 × 10−9 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLFeSi at 1636 K (m2 s−1) 2.38 × 10−9 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLSiFe at 1636 K (m2 s−1) 2.52 × 10−9 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLSiSi at 1636 K (m2 s−1) 1.31 × 10−8 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

capillary anisotropy (εc) — 0.03 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Material parameters used in the dendrite tip growth model.

parameter units value source

hypercooling K 117.15 TCNI8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thermal diffusivity m2 s−1 1.8 × 10−6 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gibbs–Thomson coefficientΓ Km 1.0 × 10−7 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

velocity of sound (V0) m s−1 4900.0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface diffusion velocity of Ni m s−1 5.0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface diffusion velocity of Si m s−1 10.0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion coefficient of Ni m2 s−1 5.19 × 10−9 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion coefficient of Si m2 s−1 1.08 × 10−8 MOBNI4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kinetic coefficient K 1100.85 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Dendrite tip growth model
The material parameters used in the dendrite tip velocity and radius calculations are listed in
table 2. The material parameters such as hypercooling, diffusion coefficients for each components
were obtained from thermodynamic and diffusion databases TCNI8 and MOBNI4, respectively,
from Themo-Calc software. Partition coefficients for Ni, Fe and Si were calculated as a function of
temperature using TCNI8. A linear interpolation was used to estimate the equilibrium partition
coefficient at a given undercooling for calculating the dendrite tip velocity and radius.

The constitutional undercooling is expressed as a linear combination of constituent elements
for dilute ternary alloys, �Tc = ∑n

i=1 �Tci [19,20]. This method deviates for the concentrated
alloys where the liquidus surface is curved [27]. In order to account for the nonlinearity of the
liquidus surface that is normally present in concentrated alloys, equation (3.6) was used. No
explicit formula was given for the constitutional undercooling in this equation. The composition
at the dendrite tip was calculated using equation (3.7). The difference in liquidus temperature at
c∗

i and c0
i can be calculated from the thermodynamic database. In this work, the liquidus surface

as a function of composition was calculated beforehand. These numerical data were fitted to
a polynomial given by equation (5.1). This expression was used for the calculation of liquidus
temperature and liquidus slope.

The polynomial used for fitting the numerical data is as follows:

B =
n∑

i=0

n∑
j=0

ai,jx
i
1xj

2, (5.1)
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Figure 1. Time–temperature profiles at various undercoolings. Dotted line represents the liquidus temperature. (Online version
in colour.)

Figure 2. Snapshots of the video captured using high-speed camera during undercooling (�T = 159 K). The diameter of the
solidified sample is 5 mm from the last image. (Online version in colour.)

where B is composition-dependent material property such as Gm or Teq
L , x1 and x2 are the mole

fractions of component 1 and 2, respectively, ai,j is the fitting parameter and n is the order of the
polynomial. n = 5 is being used for fitting in this work.

6. Results and discussion

(a) Experimental results
The time–temperature profiles of Ni–Fe–Si alloys with different undercooling are shown in
figure 1. The liquidus temperature of the studied alloy is 1383◦C taken from the TCNI8 database
from Thermo-Calc. The undercooling temperature was calculated as the difference between the
recalescence and liquidus temperatures. It is evident that there is no slope change after the
undercooling, which confirms the solidification of a single phase. The series of images captured
using the high-speed camera for the alloy that was undercooled to 159 K is shown in figure 2.
In these images, the difference in the contrast is due to the evolution of latent heat during
solidification. The dark region in the first image represents the initial melt and the bright region
corresponds to the solid. This region starts from the edge and evolves into the melt as the
solidification progresses. This can be observed from the series of snapshots provided from the
high-speed video captured in our experiments.

X-ray diffractograms of the as-cast and undercooled samples are shown in figure 3. It can be
observed that all the samples show a single phase with FCC crystal structure. These results are
matching with the predictions from Thermo-Calc software that the primary solidifying phase is
the single-phase FCC solid solution.



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20180208

................................................................

20 30 40 50 60 70 80 90 100

–FCC

DT = 159 K

DT = 188 K

DT = 110 K

DT = 88 K
in

te
ns

ity
 (

ar
b.

 u
ni

ts
)

2q (°)

as-cast

DT = 38 K
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Figure 4. SEM-BSE micrographs of (a) as-cast, (b)�T = 38 K and (c)�T = 88 K undercooled alloys.

The back-scattered electron (BSE) images of the as-cast and �T = 38 K, �T = 88 K, �T = 110 K
samples captured using SEM are shown in figure 4. The dendritic microstructure was observed
in the as-cast sample and no second phase was observed. Microstructure of the undercooled
sample (�T = 38 K) is fully dendritic. It shows a clear contrast between the dendritic and the
interdendritic regions that indicates solute partitioning during solidification. With the increase in
undercooling, reduction in the contrast between the dendritic and the interdendritic regions is
observed, which is an indication of the onset of solute trapping.

It is evident that there is a dendrite to grain transition from the optical micrographs as shown
in figure 5. The dendritic microstructure along with the grain boundary can be seen in the
microstructure of samples with �T = 88 K and �T = 110 K. Fragmented dendrites can be seen
for an undercooling of 159 K and the complete grain structure can be observed for the sample
with highest undercooling (188 K) in this study. The formation of the grain structure with an
increase in undercooling can be attributed to the increase in homogeneous nucleation sites within
the alloy melt. This is followed by rapid solidification because of the large driving force for phase
transformation.

The constitutional partition during solidification can be understood from the EDS spectrum.
Figure 6 shows the EDS spectra for the sample with �T = 38 K. The line at which the EDS scan
was performed is marked in the SEM image. It can be inferred from the spectrum that there is
enrichment of Si and Ni in the interdendritic region and that of Fe in dendrite. This is evident
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Figure 5. Optical micrographs of undercooled alloys (a)�T = 88 K, (b)�T = 110 K, (c)�T = 159 K and (d)�T = 188 K.
(Online version in colour.)

from the phase diagram of the Ni–Fe–Si system where partition coefficient of the Ni and Si are
less than 1 and that of Fe is greater than 1.

(b) Dendrite theory
The interface velocity measured using a high-speed camera along with the dendrite tip growth
rate from theoretical calculations for various undercooling is shown in figure 7. The maximum
growth velocity (30.4 ± 2.2 m s−1) was observed for the highest undercooling (�T = 188 K)
achieved in this work using experiments. A temperature-dependent kinetic coefficient of the
form μ · (p + q�T) was used for analytical calculations [30]. The parameters p = 1 and q = 0.092
were obtained by fitting the dendrite tip velocity with experimental observations at higher
undercooling. The underlying physics in dendrite tip evolution can be understood from the
dendrite tip radius, composition and contributions to bath undercooling. Figure 8 shows the
dendrite tip radius, fraction of undercooling, composition at dendrite tip and constitutional
undercooling as a function of undercooling.

From figure 8a,b, it can be observed that for low undercooling (�T < 60 K) a monotonous
variation of dendrite tip radius, compositions of Fe and Si in solid and liquid. The decrease
in R is due to the solutal interactions taking place at the interface. The composition of Fe at
the interface decreases and composition of Si at the interface increases in the solid and liquid.
As the undercooling changes, the compositions at the interface tries to adjust according to the
local equilibrium which indicates a diffusion limited growth. The constitutional undercooling is
dominant (greater than 75%) in this regime. The decrease in dendrite tip radius with undercooling
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leads to an increase in the curvature undercooling contribution to the total undercooling as seen
in figure 8b. For �T > 123 K, variation in the dendrite tip is small which is evident from the near-
constant profile of the interface composition of Fe and Si in solid and liquid. In this regime,
kinetic undercooling is dominant, which indicates that the growth is governed by the interface
attachment kinetics. It can be observed that at low and high undercooling, the variations of R,
c∗ are monotonous which indicates the preferred growth mode. However, for 60 < �T < 123 K,
these variations are non-monotonous, indicating a mixed mode of growth. At intermediate
undercooling, the solutal and curvature effects are the strongest. Also, the curvature effects are
coupled strongly with multi-component solute diffusion field. Hence, we observe the nonlinearity
in the growth rate and undercoolings is strong in this regime.

Figure 8d represents the constitutional undercooling as a function of total undercooling. The
contributions of Fe and Si to �Tc are calculated using the following equations [27]:

�TFe
c = Teq

L (x0
Fe, x0

Si) − Teq
L (x∗L

Fe, x0
Si) (6.1)
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Figure 9. Dendrite morphology and composition profile for (a) Fe, (b) Si simulated using the phase-field method for�T =
20 K and growth duration of 46µs. (Online version in colour.)

and
�TSi

c = Teq
L (x0

Fe, x0
Si) − Teq

L (x∗L
Fe, x∗

Si). (6.2)

From figure 8d, we can observe that the summation term underestimates the constitutional
undercooling. As given in the works of Bobadilla et al. [19] and Löser & Herlach [20], if the linear
addition of undercooling contributions is followed, the results will deviate significantly without
considering the effects of solute interactions of the systems with nonlinear liquidus surface.

(c) Phase-field simulations
Figure 9 shows the composition map for Fe and Si simulated using the phase-field method at
�T = 20 K for a growth duration of 46 µs. These results can be considered as representative
simulations for low undercooling experiments. The dendrite tip growth direction is rotated by 45◦
with respect to the coordinate axis. The grid size and time step of the simulation are 2.0 × 10−9 m
and 6.1 × 10−11 s, respectively. The calculated velocity of the dendrite tip from the phase-field
simulation is 6.6 × 10−3 m s−1. For �T = 20 K, the analytical model predicts the velocity of the
dendrite tip to be 2.8 × 10−2 m s−1. This can be understood by performing a systematic study
of the dependence of material parameters in both the models. From figure 9, it can be observed
that Fe is enriched in the growing solid dendrite and Si is enriched in the liquid at the dendrite
interface. This can be correlated with results of EDS which show enriched Si and depleted Fe in
the interdendritic region (figure 6). The solute diffuse boundary of Si is longer when compared
with Fe, which indicates that the solutal undercooling is dominated by Si. This can be inferred
from figure 8d.

7. Conclusion
In this work, interface growth velocity and undercooling for Ni–Fe–Si alloys were measured using
flux undercooling experiments. The structural and microstructural characterization confirms the
formation of a single phase during solidification. The highest growth velocity achieved was
30.4 ± 2.2 m s−1. The dendrite growth theory was used for analytical calculations from which
three modes of dendrite growth were identified. The interaction of solutes leads to nonlinear
behaviour of dendrite tip radius and velocity with respect to undercooling. This was achieved
by incorporating a modified term for constitutional undercooling. The temperature-dependent
kinetic coefficient indicates that the interface attachment dominates the growth of the dendrite.
Phase-field simulations were carried out to study the spatial evolution of the microstructure. Si
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was found to have a longer solute boundary layer compared with Fe. Also, Fe is enriched in the
solid phase and Si is enriched in the liquid phase.
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